
Centrum voor Wiskunde en Informatica

Alma-0: An imperative language that supports declarative programming

R. Apt, J. Brunekreef, V. Partington and A. Schaerf

Probability, Networks and Algorithms (PNA)

PNA-R9713 September 30, 1997

Report PNA-R9713
ISSN 1386-3711

CWI
P.O. Box 94079
1090 GB Amsterdam
The Netherlands

CWI is the National Research Institute for Mathematics
and Computer Science. CWI is part of the Stichting
Mathematisch Centrum (SMC), the Dutch foundation
for promotion of mathematics and computer science
and their applications.
SMC is sponsored by the Netherlands Organization for
Scientific Research (NWO). CWI is a member of
ERCIM, the European Research Consortium for
Informatics and Mathematics.

Copyright © Stichting Mathematisch Centrum
P.O. Box 94079, 1090 GB Amsterdam (NL)

Kruislaan 413, 1098 SJ Amsterdam (NL)
Telephone +31 20 592 9333

Telefax +31 20 592 4199

Alma-0: An Imperative Languagethat Supports Declarative ProgrammingKrzysztof R. AptCWIP.O. Box 94079, 1090 GB, The NetherlandsandDept. of Mathematics, Computer Science, Physics & AstronomyUniversity of Amsterdam, The NetherlandsJacob Brunekreef, Vincent PartingtonDept. of Mathematics, Computer Science, Physics & AstronomyUniversity of Amsterdam, The NetherlandsAndrea SchaerfUniversit�a di Roma \La Sapienza"Dipartimento di Informatica e Sistemisticavia Salaria 113, 00198 Roma, ItalyABSTRACTWe describe here an implemented small programming language, called Alma-0, that augments the expressivepower of imperative programming by a limited number of features inspired by the logic programming paradigm.These additions encourage declarative programming and make it a more attractive vehicle for problems thatinvolve search. We illustrate the use of Alma-0 by presenting solutions to a number of classical problems,including �-� search, STRIPS planning, knapsack, and 8 queens. These solutions are substantially simplerthan their counterparts written in the imperative or in the logic programming style and can be used for di�erentpurposes without any modi�cation.We also discuss here the implementation of Alma-0 and an operational, executable, semantics of a largesubset of the language.1991 Mathematics Subject Classi�cation: 68N05, 68N151991 Computing Reviews Classi�cation System: D.3.2,F.3.3, I.2.8Keywords and Phrases: imperative programming, declarative programming, search.Note: Work carried out under project PNA1.2, CIP.1. IntroductionIn this paper we describe a programming language, Alma-0, that combines advantages of logic andimperative programming in order to deal in a natural way with algorithmic problems that involvesearch. Alma-0 extends imperative programming with some features that are inspired by the logicprogramming paradigm. In our design we were guided by the following four principles:� The proposed extension should be downward compatible with the underlying imperative pro-gramming language.� This extension should be upward compatible with a future extension that will support constraintprogramming.

2 � The proposed constructs should support declarative programming.� This extension should be small. (In fact, we propose nine new features.)We believe that these postulates make our proposal distinct and substantially simpler from previousproposals that dealt with integration of constructs inspired by declarative programming languages (forexample automatic backtracking) into imperative programming.In fact, Alma-0 should not be viewed only as a speci�c programming language proposal but ratheras an instance of a generic method for extending (essentially) any imperative programming languagewith facilities that encourage declarative programming.To demonstrate the feasibility of our approach we went through the full process of the implemen-tation of the language and the description of its semantics for a speci�c base imperative language,namely a subset of Modula-2.The proposed features include:� use of boolean expressions as statements and vice versa,� a statement dual to the FOR statement that introduces (\don't know") nondeterminism in theform of choice points and backtracking,� a FORALL statement that introduces a controlled form of iteration over the backtracking,� uni�cation | here limited to a use of equality as assignment; this yields a new parameter-passingmechanism.In such an amalgamated language we can freely pro�t from the advantages of both programmingstyles.The assignment, shunned in declarative programming and, a fortiori, in logic programming, is in ouropinion needed in a number of natural situations, which we illustrate by means of several examples. Ingeneral, assignment seems to be needed for counting or for recording purposes and means of expressionof such uses o�ered within the logic programming paradigm are unnatural. In particular, in Prolog,assignment is either used in a space ine�cient and limited form, like in X1 is X+1, or is simulatedusing assert and retract. In our view the direct use of assignment, as in imperative programming,is in such cases simpler and more e�cient. Further, we can use a rich variety of data types, includingarrays and records, in presence of strong type checking and several traditional control structures thatsupport structured programming.In turn, the logic programming paradigm provides a number of useful features. The built-in back-tracking mechanism supports nondeterministic programming in a simple way. The use of uni�cationto assign values allows us to use the same program for testing, computing one, some or all solutions, orfor completing a partial solution. This versatile use of programs is also available in Alma-0. It shouldbe pointed out, however, that our use of uni�cation is extremely restricted and consequently anotherimportant aspect of logic programming | symbolic programming | is not realized in Alma-0.Combining two programming styles is always a debatable endeavour and it is important to reectwhat, if any, are the advantages of such an amalgamation. We try to answer this question by presentingsolutions to several classical problems. We consider these programs superior to their counterpartswritten as imperative programs or as programs in the logic programming style for the followingreasons:� In each case the programs are closer to the speci�cations than the alternative solutions. Thissuggests that the proposed additions make the programming task simpler and improve readabil-ity.� The presented programs, or program fragments, that do not use assignment, can be viewed asdeclarative in the sense that they admit an alternative reading as logic formulae. Development

3and veri�cation of such programs is considerably simpli�ed due to their logical meaning. Insome cases programs are equal to their speci�cations | see e.g., our solutions to Problems 3(Straight String Search), 7 (Remarkable Sequence Revisited), and 9 (Linear Search) | and aretherefore obviously correct.� All the programming constructs introduced in Alma-0 are guaranteed to terminate. As a resultwe can now write programs, like the solutions to the just mentioned problems or solutions toProblems 6 (Knapsack) and 10 (Squares in the rectangle), termination of which is guaranteedby their syntactic form.� When passing from speci�cations to a solution the introduction of additional variables shouldbe viewed as a drawback, because their relation to the variables present in the speci�cations hasto be properly explained. From this viewpoint constructs or solutions (of the same complexity)that do not call for the use of additional variables should be considered as superior. Now, theproposed solutions do introduce less variables than the traditional ones.In our opinion, the proposed additions blend well with the conventional way we look at imperativeprograms.As the underlying language for Alma-0 we use Modula-2 of Wirth (1985). More precisely, Alma-0 is an extension of a subset of Modula-2. The features of Modula-2 which are at this stage notimplemented in Alma-0 are discussed in Section 6.An alternative choice, C, in contrast to Modula-2, would have required a change of the semanticsof the base language. Indeed, in C boolean expressions followed by \;" are already legal statements,the presence of which has no e�ect on the ow of computation.It should be stressed, however, that the base language is completely inessential in our investigations.The presented programs in Alma-0 should be understandable by anybody familiar with the basics ofan imperative language. Moreover, the proposed additions can be naturally incorporated into mostof the programming languages supporting the imperative programming paradigm.The paper is organized as follows. In Sections 2, 3, 4, and 5, we introduce in stages the extensionsof the language, and summarize them in Section 6. In Sections 7 and 8 we describe two semantics ofAlma-0 | a declarative one and an operational one, and in Section 9 we explain its implementation.Finally, related and future work is discussed in Section 10.The implementation of Alma-0 is available via the Web at http://www.cwi.nl/alma/.2. Boolean Expressions and StatementsWe begin by identifying boolean expressions and statements.2.1 Boolean Expressions as StatementsFirst, we allow boolean expressions to be used as statements. We denote this extension by BES. Inwhat follows we refer to boolean expressions used as statements as tests.An evaluation of a test can yield TRUE, FALSE or can cause a run-time error if an uninitializedvariable is encountered. The notion of an uninitialized variable is further elaborated in Subsection 5.1where we shall also relax the last possibility for tests of the form s = t.A speci�c interpretation of tests during a computation is crucial for our purposes. We stipulate thefollowing.De�nition 1(i) If a test evaluates to TRUE, the computation upon reaching the test continues.(ii) If a test evaluates to FALSE, the computation upon reaching the test fails.(iii) If the subcomputation of a procedure (resp. function) call fails, then the computation uponreaching this procedure (resp. function) call fails.

4(iv) A �nite, error-free computation succeeds if it does not fail. 2Clause (iii) explains how the failure propagates due to the use of functions and procedures. Inparticular, when the computation reaches a test like f(1) = 0 and the call f(1) of the function ffails, the test fails, as well. We stress the fact that failure di�ers from a run-time error.As a �rst example of the use of this extension consider the problem of checking whether a sequencerepresented by an array a: ARRAY[1..M] OF INTEGER, where M � 2, is ordered. The solution isimmediate | it su�ces to use the following statement:FOR i := 1 TO M-1 DO a[i] <= a[i+1] ENDWhen the array is not ordered, the above statement fails and the loop is exited as soon as the leastvalue of i is encountered for which the test a[i] <= a[i+1] fails.2.2 Statements as Boolean ExpressionsIn the above de�nition we postulated that �nite, error-free computations either succeed or fail. So itis natural to introduce the following de�nition.De�nition 2� If a computation of a sequence of statements succeeds, then we say that this statement sequenceevaluates to TRUE.� If a computation of a sequence of statements fails, then we say that this statement sequenceevaluates to FALSE. 2This de�nition allows us to use statement sequences as boolean expressions. We call this extensionby SBE.We postulate that the control variable of a FOR statement retains its value once the FOR statementis exited, be it due to a failure or due to a successful termination. This facility is used in the followingprogram fragment that checks whether for two arrays a and b of type ARRAY[1..N] OF INTEGER,where N � 1, a precedes b in the lexicographic ordering:NOT FOR i:= 1 TO N DO a[i] = b[i] END;a[i] < b[i]Operationally, this program fragment searches for the least i in the range [1..M] such that a[i]di�ers from b[i] (and fails if no such i exists) and then succeeds i� for this i the test a[i] < b[i]succeeds.As another example of the use of BES and SBE consider the problem of counting the number ofdi�erent elements in an array x: ARRAY[1..M] OF CHAR. A natural solution (although not the moste�cient one) uses a statement as a boolean expression:count := 0;FOR i := 1 TO M DOIF FOR j := 1 TO i-1 DO x[i] <> x[j] ENDTHEN count := count+1ENDENDThe identi�cation of boolean expressions and statements allows us to apply negation to a statement.This, in combination with the provision for failures, allows us to realize within Alma-0 the powerful\negation as failure" mechanism of logic programming and Prolog. To illustrate its use consider thefollowing problem.

5

10 10 1 cab d
Figure 1: A 0-1 game treeProblem 1 Minimax 0-1 Search. Compute the value of the root of a 0-1 game tree using the minimaxsearch (see e.g., Barr, Feigenbaum & Cohen (1981)).By a game tree we mean a �nite tree such that each leaf of it has an integer value. In turn, by a0-1 game tree we mean here a game tree such that each leaf of it at an even level has the value 1(winning position) and at an odd level has the value 0 (losing position). We assume here that theroot is at level 1 and that the levels are counted from the root downwards. As an example see thetree in Figure 1.Recall that the idea of the minimax search is as follows. Given a game tree, the values are assignedin a depth-�rst search manner to each node of the tree in such a way that the value of each non-leafnode a equals� the minimum of the values of its children if a is at an even level,� the maximum of the values of its children if a is at an odd level.In what follows we call an internal node of a 0-1 tree game a winning position if by means of theminimax search� the value 0 is assigned to it when it lies at an even level,� the value 1 is assigned to it when it lies at an odd level.As an example consider the 0-1 game tree of Figure 1. In this tree the internal nodes a, b, and dare the winning positions.We represent a 0-1 game tree by assuming that all its nodes are elements of some further unspeci�edtype T and by using some further undetermined procedure Move(x:T; VAR y:T) the successive calls ofwhich for a given node x generate in y upon backtracking all its direct descendants. (The programmingconstructs that support backtracking are introduced in the next section.) The values 0 and 1 associatedwith the leaves of the tree are absent in this representation but they can be easily recovered bycomputing the level of each leaf.The procedure to solve the above problem is remarkably concise: It simply de�nes when a positionis a winning one, namely when a move exists which leads to a losing, that is non-winning, position:PROCEDURE Win(x: T);VAR y: T;

6

7 e fb cd g9
a

Figure 2: A search tree for the �-� algorithmBEGINMove(x,y);NOT Win(y)END Win;Now a node a is the winning position i� the call Win(a) succeeds. In this recursive procedure thebase case appears when the internal call to the Move fails | then the corresponding call of Win alsofails. It is useful to note that in this way we obtained a replica of the corresponding solution in Prolog(see e.g., Apt (1997)[page 302]).We conclude this section by a more substantial example of the use of BES and SBE. We considernow arbitrary game trees.Problem 2 �-� Search. Compute the value of the root of a game tree using the �-� search (see e.g.,Barr et al. (1981)).Recall that the idea of the �-� search is that, in order to compute the value of a node, it is possiblein some cases to identify nodes that cannot contribute to the solution, as a result of which somesubtrees do not have to be explored.Below we call a node a max-node (resp. min-node) if it is at an odd (resp. even) level. As oursolution at one point conceptually di�ers from the customary one, we explain the �-� search in moredetail by means of the example in Figure 2, where the root a is a max-node (and consequently b, cand f are min-nodes, and d, e, and g are max-nodes).In order to compute the value for the root a, the �-� search recursively computes the values forall its children starting from the left. The values of � and � initially equal to �1 and 1 and aredynamically adjusted during the search. In particular, during the computation of the value of themin-node c, when the value 7 is found at node d, there is no more reason to compute the values ofnodes e and g. Indeed, the value returned by node c cannot be bigger than 7 which is less than 9already found at node b.In our solution we exploit the use of failure to implement the procedure in a di�erent (and simpler)way than the customary imperative solution.In what follows (as is usually done) we dispense with the distinction between max-nodes and min-nodes by alternating the sign and position of � and � while switching levels. Now, during thecomputation of the value of node c, the value val returned by each of its children is tested againstthe current value of beta. When the test val < beta fails, the procedure call fails and no value isreturned. In our example, the opposite (-9) of the value found at node b is passed as argument betato the invocation of the procedure search at node c. Therefore no value is returned by node c, becausea failure occurs when the value -7 returned by node d fails the test val < beta for beta equal to -9.

7Notice that in the program below the computation of the value of each child is inside an IF statement,so after the failure at node c, the computation for node a continues with node f without getting anyvalue from c.Di�erently from the preceding Win procedure, we assume here to have at our disposal an explicitrepresentation of the tree, together with the customary functions that allow us to traverse the givengame tree, the meaning of which should be obvious.PROCEDURE AlphaBeta(node: TreeNode; alpha, beta: INTEGER; VAR val: INTEGER);VAR child: TreeNode;BEGINIF IsLeaf(node)THEN val := Value(node)ELSEchild := FirstChild(node);WHILE child <> EmptyNode DOIF AlphaBeta(child,-beta,-alpha,val)THEN val < beta; alpha := Max(alpha,val)END;child := NextChild(node,child)END;val := alphaENDEND AlphaBeta;The di�erence with respect to the customary imperative solution is in the way the information thatthe value for node c does not have to be computed is carried. In the customary solution (see e.g.,Barr et al. (1981)), when the search is interrupted, value 7 is assigned to node c, which is somewhatmisleading because the actual value of c has not been computed and can di�er from 7.In contrast, in our solution the search procedure for c automatically ends in a failure, which suppliesthe information that node c fails to contribute to the computation of the value of node a. In theinitial call to AlphaBeta the value of beta must be assigned to a value, say Maxint, higher than allthe values appearing in the leaves of the tree. Analogously, the value of alpha must be assigned to-Maxint. These settings ensure that no pruning (i.e., failure) takes place before the �rst value forval is computed, and therefore the initial call always succeeds and yields the desired value in the lastactual parameter.3. Nondeterministic StatementsFailures on their own can be used only as a means of evaluating a sequence of statements to FALSEin the SBE extension. In some situations it is useful to employ failures also to generate successivecandidates that satisfy some conditions. To this end we need some language constructs that introducechoice points and backtracking into the computational process.3.1 ORELSE StatementWe begin by introducing an ORELSE statement with the following syntax:EITHER <statement-sequence>ORELSE <statement-sequence>...ORELSE <statement-sequence>ENDWe denote this extension by ORELSE and we refer to the parts of the ORELSE statement asbranches. The computational interpretation is as follows.

8De�nition 3 The computation of an ORELSE statement starts by proceeding through the �rst branch.If the computation eventually fails, possibly beyond the end of the ORELSE statement, backtrackingtakes place and the computation resumes with the next branch in the state in which the previousbranch was entered. If the last branch fails the ORELSE statement fails. 2Thus the ORELSE statement introduces choice points to which the computation can return. As anexample consider the program fragmentEITHER x := x - 2*a; x > 0ORELSE x > a; y := xENDIf the initial value of x is larger than 2*a, the computation passes through the �rst branch andsucceeds. In turn, if the initial value of x is between a and 2*a the computation passes through the�rst branch and fails upon encounter of the test x > 0. Then backtracking takes place, the initialvalue of x is restored and the computation passes through the second branch and eventually succeeds,assigning the initial value of x to y. Finally, if the initial value of x is less than a, both branches failand no value is assigned to y.Consider now another example, where we assume that initially the value of x equals a positivenumber a:EITHER y := xORELSE x > 0; y := -xEND;x := x + b;y < 0Here the computation that passes through the �rst branch eventually fails upon encounter of thetest y < 0 and backtracking takes place. The second branch of the ORELSE statement is then enteredwith the initial value of x restored and eventually the whole computation succeeds, with x equal toa+b and y equal to -a.Note that in the second example the failure occurs outside the scope of the ORELSE statement; thatis, the backtracking takes place here after the control has left the ORELSE statement. The exampleshows that upon backtracking the assignments outside the scope of the ORELSE statement are also\undone".This interpretation of the meaning of the ORELSE statement allows the user to write programs inwhich the creation of choice points and the testing of the selections made by them are done in separateparts of the program. Consider the following typical structure:Generate(x);Test(x)in which the �rst procedure generates successive values for x by the introduction of choice points,and the second one tests these values. The correct functioning of this program is achieved only if thechoice points remain active after the execution of the procedure Generate1.3.2 SOME StatementOne of the limitations of the ORELSE statement is that it generates a number of choice points �xed inadvance. In some situations, for example when processing an array, it is useful to generate choice pointsthe number of which depends parametrically on some constants or is determined only at run-time.This facility is realized by the SOME extension that provides the SOME statement with the followingsyntax:1This point will be further illustrated in Section 4.

9SOME <ident> := <expression> TO <expression> DO<statement-sequence> ENDThe intention is that the SOME statement is a \dual" of the FOR statement. In particular, given aninteger variable i we wishSOME i := 1 TO 10 DO T ENDto be equivalent toEITHER i := 1; TORELSE SOME i := 2 TO 10 DO T ENDENDMore precisely, we stipulate the following meaning of the SOME statement. Let S be the statementSOME i := e1 TO e2 DO T ENDwhere i is an integer variable and in the current state e1 evaluates to an integer m1 and e2 evaluatesto an integer m2. The following cases arise.� m2 < m1. Then S is equivalent to FALSE.� m2 = m1. Then S is equivalent to i := m1; T.� m2 > m1. Then S is equivalent toEITHER i := m1ORELSE i := m1+1...ORELSE i := m2END;TAs in the case of the FOR statement we postulate that the control variable of the SOME statementretains its value once the SOME statement is exited, be it due to a success or due to a failure. Also, weassume for simplicity that the variable i is not modi�ed in T.2The next problem illustrates the use of a SOME-FOR combination.Problem 3 Straight String Search. Consider two arrays of characters, p (the pattern) and s (thestring), declared respectively as variables of the following two types:Pattern = ARRAY [0..M-1] OF CHAR;String = ARRAY [0..N-1] OF CHAR;with M � N. Find the �rst occurrence of p in s.The following procedure is a naive solution to this problem. It is much more straightforward thanits imperative counterpart given in Wirth (1986, page 60).2This is not required but, like in the case of the FOR statement, is a common-sense restriction. In fact, a variableprocessed automatically should not be modi�ed explicitly by the programmer.

10PROCEDURE StringMatch(p: Pattern; s: String): INTEGER;VAR j,i: INTEGER;BEGINSOME i := 0 TO N-M DOFOR j := 0 TO M-1 DOs[i+j] = p[j]ENDEND;RETURN iEND StringMatch;In turn, the following problem illustrates the use of a FOR-SOME combination.Problem 4 Remarkable Sequence. (See Coelho & Cotta (1988, page 193)) Call a sequence of 27elements remarkable if it consists of three 1's, three 2's, : : : , three 9's arranged in such a way thatfor all i 2 [1::9] there are exactly i numbers between successive occurrences of i. For example, thesequence(1,9,1,2,1,8,2,4,6,2,7,9,4,5,8,6,3,4,7,5,3,9,6,8,3,5,7)is remarkable. Write a program that tests whether an array of 27 elements is a remarkable sequence.The desired program is almost a verbatim speci�cation of the problem (though not the most e�cientsolution).TYPE Sequence = ARRAY [1..27] OF INTEGER;PROCEDURE Remarkable(VAR a: Sequence);VAR i, j: INTEGER;BEGINFOR i := 1 TO 9 DOSOME j := 1 TO 25-2*i DOa[j] = i;a[j+i+1] = i;a[j+2*i+2] = iENDENDEND Remarkable;The bound 25-2*i comes from the requirement that j+2*i+2 � 27. In Section 5 we shall analyzethe related problem of �nding remarkable sequences.Finally, we discuss a linear planning problem, known in the Arti�cial Intelligence literature asthe propositional STRIPS problem (see Fikes & Nilsson (1971)). In propositional STRIPS, actionsand goals are members of two (disjoint) alphabets of propositional letters. A STRIPS action rule iscomposed of an action and three sets of goals: the preconditions, the add-list, and the delete-list. Astate is a set of goals. An action is applicable in a given state if all its preconditions are members ofthe state. The result of the application of an action in a current state is a new state where the goalsin the add-list and the delete-list of the action are, respectively, added to and deleted from the currentstate. An action library is a set of action rules.Problem 5 Propositional STRIPS Planner. Given an action library, an initial state and a �nal state,�nd a sequence of actions the application of which leads from the initial state to a state that includesthe �nal state.The above problem is PSPACE-complete (see Bylander (1991)) and is generally solved using back-tracking algorithms. In particular, the so-called STRIPS algorithm works (nondeterministically) as

11follows: guess a goal g in the �nal state not already satis�ed in the current state, guess an action awhich has g in its add-list, and compute (recursively) the subplan p to reach the preconditions of a.The concatenation of the sequences p � hai for all g in the �nal state gives the complete plan.The STRIPS algorithm involves guessing (realized by backtracking) and consequently it is naturalto implement it in Prolog. Such a Prolog implementation is provided, e.g., by Shoham (1994). In thissolution, due to lack of assignment in Prolog, various auxiliary variables are needed to store temporaryvalues of goals and plans. On the other hand, implementation in traditional imperative languages ispretty cumbersome due to lack of facilities that support backtracking.In contrast, in our language, we can use both guessing (realized by means of the ORELSE and SOMEstatements) and assignment; therefore we can produce a conceptually simpler and more readablesolution.We use lists of characters to represent sets of goals and actions. To deal with them, we de�nethe type List the elements of which are characters, with various functions with their usual intuitivemeaning: Member, Head, Tail, Subset, Include, Subtract, and Insert. We also assume that thecalls to Head and Tail fail if the argument is the empty list.TYPEActionType =RECORDName: CHAR;PreList: List;AddList: List;DelList: ListEND;ActionLib = ARRAY [1..NumActions] OF ActionType;PROCEDURE ChooseGoal(VAR goal: CHAR; goals: List; state: List);BEGINEITHERgoal := Head(goals);NOT Member(goal,state)ORELSE ChooseGoal(goal, Tail(goals), state)ENDEND ChooseGoal;PROCEDURE ApplyRule(action: ActionType; VAR state: List; VAR plan: List);BEGINSubtract(state, action.DelList);Include(state, action.AddList);Insert(action.Name,plan)END ApplyRule;PROCEDURE AchieveGoal(goal: CHAR; lib: ActionLib; VAR forbidden_actions: List;VAR state: List; VAR plan: List);VAR i: INTEGER;BEGINSOME i := 1 TO NumActions DONOT Member(lib[i].Name, forbidden_actions);Member(goal,lib[i].AddList);Insert(lib[i].Name,forbidden_actions);Strips(state,lib[i].PreList,forbidden_actions,plan,lib);ApplyRule(lib[i],state,plan)ENDEND AchieveGoal;

12PROCEDURE Strips(VAR state: List; goals: List; forbidden_actions: List;VAR plan: List; lib: ActionLib);VAR goal: CHAR;BEGINIF NOT Subset(goals,state)THENChooseGoal(goal,goals,state);AchieveGoal(goal,lib,forbidden_actions,state,plan);Strips(state,goals,forbidden_actions,plan,lib)ENDEND Strips;The planner is invoked by calling the recursive procedure Strips with the initial state as the stateparameter, the �nal state as the goals parameter, the empty list for forbidden actions and forplan, and the given action library (which is not modi�ed) as lib.The list of forbidden actions is augmented by the Insert procedure which is invoked within the bodyof the AchieveGoal procedure, to which the list is passed by variable. This way the selected actionbecomes forbidden for the subsequent calls of the Strips procedure, both in the body of AchieveGoaland in Strips itself.3Notice that the guess of a goal, typically done in Prolog using the query member(Goal,Goals)with Goals instantiated and Goal a variable, is implemented here by means of the ORELSE statementcombined with recursion.Notice also that the prescribed semantics of the ORELSE statement is essential for the correct func-tioning of the program. Namely, the ChooseGoal procedure creates choice points to which the controlreturns upon a possible failure that can occur also outside the scope of the ORELSE statement, eitherwithin the AchieveGoal procedure or within the recursive invocation of the Strips procedure.4. Backtracking and Control Flow4.1 COMMIT StatementIn the previous section we have seen two constructs that allow the user to introduce choice points. Inlarge programs it is preferable to restrict the range of action of the choice constructs to some speci�cparts of the program. This would allow us to dispense with keeping track of too many choice pointsand would prevent unexpected behaviour that could result from existence of active choice pointscreated far back in the program.To this aim we introduce the COMMIT extension which is realized by the COMMIT statement, withthe following syntax:COMMIT <statement-sequence>ENDThe statement COMMIT S END is executed in the same way as S, except that when the computationof S succeeds, all choice points created during the execution of S are removed. The choice pointspreviously created are left unchanged.For example, consider the following program fragment in which a is a positive number:COMMITEITHER x > 0; y := xORELSE y := aEND;y > 03This corrects what we believe is an omission in Shoham (1994) in which the selected action is added only in the�rst of the two calls, thus making nontermination possible.

13END;y >= a;Its computation fails if the value of x is positive but smaller than a. Namely, when the control leavesthe COMMIT statement the value of y is equal to the value of x and the choice point created by theORELSE statement is erased. Therefore backtracking to the second branch does not takes place oncethe test y >= a fails. On the other hand, if the value of x is negative, the test y > 0 inside the COMMITstatement fails, the second choice is performed, and the whole computation succeeds with value a fory. Considering the StringMatch procedure of the Straight String Search problem (Problem 3) we canuse the COMMIT statement, so writeCOMMITi := StringMatch(p,s)ENDif we wish to test only whether the pattern is present in the string, thus ignoring multiple occurrences.The COMMIT statement prevents the program from looking for di�erent occurrences of p in s in case alater failure is detected.As another example consider the following way of encoding the lexicographic ordering that is alter-native to the one presented in Subsection 2.2:COMMITSOME i:= 1 TO N DOa[i] <> b[i]ENDEND;a[i] < b[i]Here COMMIT is necessary and this is a rather subtle point. In fact, with the COMMIT statement thisprogram fragment returns the value of the test a[i] < b[i] for the least i such that a[i] <> b[i],whereas without the COMMIT statement it returns TRUE i� the test a[i] < b[i] succeeds for some isuch that a[i] <> b[i].At this point let us return to the semantics of SBE extension. By the introduction of nondeter-minism a possibility now arises that choice points are created by statements used within conditions.In Alma-0 we stipulate that in such circumstances these choice points are discarded upon terminationof the evaluation of the condition. In other words, there is an implicit COMMIT surrounding each suchcondition.As an example, consider the following naive sorting algorithm:WHILE SOME i:=1 TO M-1 DO a[i] > a[i+1] ENDDO Swap(a[i], a[i+1]) ENDThe choice points created by the SOME statement are discarded here each time the �rst o�ending valueof i is found.4.2 FORALL StatementConsider again the Straight String Search problem (Problem 3), and suppose now that we want tocompute not just one, but all the occurrences of a pattern in a string. In this case we should explorethe whole string, and not only the part of it up to the �rst successful occurrence.In order to deal with this kind of situations, we introduce a new statement, called FORALL, that allowsfor exploring all the choice points generated by a given sequence of statements. More speci�cally, weuse the following syntax:

14FORALL <statement-sequence>DO <statement-sequence>ENDand denote this extension by FORALL.The statement FORALL S DO T END is processed in the following way: S and T are executed insequence, thereafter, if there are choice points left within S, control returns to the successive branchesof these choices (as if a failure were encountered). This process continues as long as there are stillchoice points in S. When at a certain point S fails (even if S succeeds 0 times) and no choice points inS are left, the computation succeeds and continues in a state in which the variables modi�ed in S arerestored to their values before the FORALL statement was entered. On the other hand, if at certainpoint T fails, the computation of FORALL S DO T END fails.Statements within S are undone upon backtracking, whereas those in T are not, i.e., they have apermanent e�ect within and after the execution of the FORALL statement. This allows us to includein T any permanent operations that should be completed upon �nding each solution to S (in logicprogramming they are generally implemented by means of input/output operations or assert andretract).This permanent e�ect of T is relative to the environment of the FORALL statement. For example, ifthe FORALL statement is inside a branch of an ORELSE statement, and eventually a failure takes place,the state of the variables before entering a new branch is restored, thus removing the e�ects of the DOpart of the FORALL statement.The choice points created during each execution of T are removed as soon as control returns to thesuccessive choice point left within S. So, in e�ect, there is an implicit COMMIT statement surroundingT. To clarify these explanations consider two examples. The program fragmenty := 0;x := 0;FORALLx := x + a;EITHER x := x + bORELSE x := x + cORELSE x := x + dENDDOWRITELN(x);y := y + xEND;prints the values of a+b, a+c, and a+d, and assigns the value of 3*a+b+c+d to y. The computationsucceeds with x equal to 0 and leaves no choice points after its execution.In turn, the following program fragment counts the number of occurrences of a pattern in a string:count := 0;FORALLk := StringMatch(p,s);DOcount := count + 1END;where the StringMatch function is de�ned in our solution to the Straight String Search problem(Problem 3).Although we do not impose any syntactic restrictions on the form of the FORALL statement, itscorrect use imposes some common-sense limitations. Namely, no variable should be modi�ed bothin the body of the FORALL part and in the body of the DO part. In fact, these parts serve di�erent

15purposes. In particular, the assignments in the FORALL part are meant to be non-permanent, so theycan be undone, while the ones in the DO part are meant to be permanent, so they should not beundone. This limitation resembles the already discussed common-sense restriction concerning the FORand SOME statements that the loop control variable should not be modi�ed within the loop body.It is worth noting that the statement FORALL S DO T END is not equivalent toEITHER S; T; FALSEORELSE TRUEENDthat mimics the so-called failure-driven loop, a standard technique in logic programming (see e.g.,Sterling & Shapiro (1994)) used to deal with this kind of situations. The di�erence stems from thefact that in FORALL S DO T END the T statement is not undone upon backtracking. Also FORALLCOMMIT S END DO T END is not equivalent to S; T as the latter statement fails if S does. Moreover,the variables modi�ed in S are not restored to their original values.Let us consider now a more substantial example of the use of the FORALL statement.Problem 6 Knapsack. Given the real-valued objects a1; : : : ; an (volumes), b1; : : : ; bn (values), andc (capacity), �nd the binary-valued objects x1; : : : ; xn (solutions) such that Pni=1 bixi is maximizedsubject to the constraint Pni=1 aixi � c.We present here a solution that encodes a depth �rst branch and bound algorithm. That is, thesolution is constructed step by step by determining at each step i whether xi is assigned to 1 or 0.Each partial solution is discarded if either1. it violates the capacity constraint, or2. it cannot be completed to a solution better than the current best one.The branch and bound algorithm is implemented by means of a FORALL statement over a FOR loopwith an ORELSE statement inside.Calling volume the total volume of the objects for which we have set xi to 1, condition 1 can betested by checking if volume in the given partial solution is smaller or equal than the capacity. Callingwaste the total value of the objects for which we have set xi to 0, condition 2 can be tested by checkingif waste in the given partial solution is larger than the waste in the current (complete) best solution.Therefore, conditions 1 and 2 are enforced in a very simple way by means of the tests volume <=capacity and waste < total value - current best.Notice that condition 1 should be tested only when an object is chosen (solution[i] := 1),whereas condition 2 should be tested only when an object is not chosen (solution[i] := 0). Theseconsiderations bring us to the following program.TYPE RealVector = ARRAY [1..N] OF REAL;BinaryVector = ARRAY [1..N] OF [0..1];PROCEDURE knapsack(volume, value: RealVector; capacity: REAL; VAR solution: BinaryVector);VAR i: INTEGER;current_best, total_value, current_volume, waste: REAL;current_solution: BinaryVector;BEGINcurrent_best := 0.0;total_value := 0.0;FOR i := 1 TO N DOtotal_value := total_value + value[i];END;current_volume := 0.0;

16waste := 0.0;FORALLFOR i := 1 TO N DOEITHERcurrent_solution[i] := 1;current_volume := current_volume + volume[i];current_volume <= capacity;ORELSEcurrent_solution[i] := 0;waste := waste + value[i];waste < total_value - current_best;ENDENDDOcurrent_best := total_value - waste;solution := current_solution;END;END knapsack;The assignment to the variable current best is within the DO part of the FORALL statement, andtherefore it is not undone upon backtracking. This is crucial for maintaining the current best solutionwhile exploring di�erent branches.5. Multiple Uses of a ProgramIn logic programming it is sometimes possible to use the same procedure for a number of di�erentpurposes. For example, the same program can be used both for testing a solution and for computingone. This multiple use of a single program is absent in the imperative programming paradigm. Inthis section we explain how this facility can be realized within our framework.5.1 Generalization of EqualityBy way of example reconsider the Remarkable Sequence problem (Problem 4) and suppose we wish tosolve a more general problem.Problem 7 Remarkable Sequence Revisited. Find an array of 27 elements that forms a remarkablesequence in the sense of Problem 4.To obtain a single solution to both problems we generalize the use of equality. In imperativeprogramming languages a variable upon its declaration is usually either initialized to a default valueor to some \garbage" value | an arbitrary value that happens to be present in the storage areaallocated to the variable.For our purposes it is important to be more precise. In what follows, we assume that a variableupon its declaration is uninitialized and remains so until a value of an expression is assigned to it. Ifthis expression uses an uninitialized variable or this value lies outside the domain of the variable, thenwe postulate that a run-time error arises. Otherwise, from that moment on the variable is initialized.So in our approach an uninitialized variable has no value associated with it. This viewpoint is usuallynot adopted in imperative programming languages.Further, we stipulate that if all the variables in an expression are initialized, then the expressionhas a known value and otherwise it has an unknown value. Now we introduce the following crucialde�nition.De�nition 4 Consider a test s = t.� Suppose both sides are expressions with known values. Then we treat it as in De�nition 1.� Suppose that

17{ one side, say s, is an uninitialized variable of a simple type{ the other side, t, is an expression with known value,{ their types are compatible.Then we treat it as an assignment, which means that the value of t is assigned to s.� The remaining cases yield a run-time error. 2In particular, if both sides are expressions with unknown values (for example uninitialized variables),a run-time error arises. Note that | conforming to the logical interpretation | we treat here bothsides of equality in a symmetric way.We denote this extension by EQ. As we already mentioned in Section 1, EQ resembles a limitedform of uni�cation. The di�erences stem from the fact that in our case uni�cation is allowed only forvariables (of simple type) and it is not extended to compound terms. In addition, our equality operatorincludes arithmethic evaluation of the known side of the operator, which is not done while unifyingterms in logic programming languages. This suggests that EQ actually mimics the is statement ofProlog. The di�erence is that is is not symmetric.Before we proceed, we need to clarify a number of points. First, let us take a closer look at theinterplay between the generalized use of equality and the call by variable (i.e., by reference) parametermechanism. When a parameter of (for simplicity) a simple type is declared as a call by variableparameter and its value is computed by means of generalized equality, this equality can be used intwo ways. If the actual parameter is an uninitialized variable, then it acts as an assignment and ifthe actual parameter is an initialized variable, then it acts as a test. As we shall see in the examplesbelow, it is exactly this double use of equality makes that it possible to use the same procedure for anumber of purposes.Next, generalized equality introduces a possibility of creating side e�ects during evaluation of testsand conditions. This leads to certain complications in case of some ill-designed programs. For example,logically NOT (x = s) is equivalent to x 6= s, but this equivalence does not carry through to Alma-0.Indeed, if x is uninitialized and the value of s is known, the �rst statement assigns to x the value ofs and fails, while the latter one yields a run-time error.Finally, this generalized use of equality can in principle conict with the prescribed meaning of itwithin Modula-2. But this could only happen if the original Modula-2 program used equality x =t (or t = x) within a condition with x uninitialized. So such a program would be certainly not ameaningful one.An alternative, which at this stage we did not pursue, was to introduce another symbol, say :=:,for such a use of equality. Our generalized use of equality in a very limited way treats equalities asconstraints. We shall return to this point in Subsection 10.2.We can now return to the Remarkable Sequence Revisited problem (Problem 7). Thanks to thegeneralized use of equality the original program is now a solution to both problems, 4 and 7!In this program the double role of equality as test and as assignment is now intertwined in a complexway. From the computational point of view the equalities in the Remarkable procedure serve nowboth to assign a value to an (uninitialized) subscripted variable and to test a value of an (initialized)subscripted variable. The assignments to the subscripted variables a[j], a[j+i+1] and a[j+2*i+2]that are generated by the equalities can be retracted at any later stage, if for some future value of ithe tests a[j] = i, a[j+i+1] = i, a[j+2*i+2] = i fail for all values of j in [1..25-2*i].Note that the use of equality instead of assignment is crucial here. In the two most extreme cases,if the actual array parameter is completely uninitialized, the equalities are used both as assignmentsand tests, and if the actual array parameter is completely initialized, these equalities are used only astests. An alternative program that uses only assignment and normal equality is more elaborate.As another example consider the following simple solution to the eight queens problem.Problem 8 Eight Queens. Place 8 queens on the chess board so that they do not attack each other.

18The solution given below simply states that each queen should be placed in a legal �eld that doesnot come under attack by the already placed queens.CONST N = 8;TYPE board = ARRAY[1..N] OF [1..N];PROCEDURE Queens(VAR x: board);VAR i,column,row: [1..N];BEGINFOR column := 1 TO N DOSOME row := 1 TO N DOFOR i := 1 TO column-1 DOx[i] <> row;x[i] <> row+column-i;x[i] <> row+i-columnEND;x[column] = rowENDENDEND Queens;In this solution the array x is declared as a VAR parameter and the assignments to its elements takeplace by means of equalities. As a result, as already mentioned above, this procedure can be used ina number of di�erent ways, other than just �nding a solution.First, it can also be used to test whether an array a is a solution. Indeed, if the actual array a isinitialized before the call Queens(a), then all the equalities x[column] = row become interpreted astests.4Second, this procedure can also be used to look for a speci�c solution. For example, to �nd asolution a to the eight queens problem such that a[1] = 4 it su�ces to writea[1] = 4;Queens(a)and to �nd a solution a such that a[1] > 4 it su�ces to writeQueens(a);a[1] > 4etc. Finally, to count the number of solutions such that a[1] > 4 we can writei := 0;FORALLQueens(a);a[1] > 4DO i := i+1ENDSo the procedure Queens can be used to compute, to test, to search for a speci�c solution, andto count the number of all solutions (that satisfy some property). In all these cases the text of theoriginal procedure does not have to be changed. This is in contrast to the customary solution (seee.g., Wirth (1986, pages 153-157)) which in each case has to be modi�ed.4It is useful to point out that out of all the uses of the procedure Queens only this one requires that equality insteadof assignment is used. Also, note that each variable x[i] is �rst used in an equality x[column] = row so no run-timeerror can arise here.

195.2 New Parameter MechanismWe just noticed that the procedures Remarkable and Queens could be used both for testing and forcomputing. To this end it was crucial that their parameter (which is of an array type) was declaredas a call by variable parameter.In the case of simple types this double use of a single procedure is possible only to a limited extentbecause non-variable expressions are also possible. For example, in the case of the INTEGER type, alsoexpressions such as 7 or x + 7 can be passed as actuals. In this case only call by value is legal.We now introduce a parameter-passing mechanism that overcomes this limitation and makes possiblesuch a double use of procedures | for testing and for computing | also in case of simple types. Wecall this parameter mechanism call by mixed form, denote its use by the keyword MIX, and call thisextension MIX. We stipulate the following, where we assume that the formal parameter is of simpletype.� Whenever the actual parameter is a variable, then it is passed by variable.� Whenever the actual parameter is an expression that is not a variable, its value is computed andassigned to a new variable v (generated by the compiler): it is v that is then passed by variable.So in this case the call by mixed form boils down to call by value.For example, if the actual parameter is an integer variable x, it is passed to the procedure byvariable, and if the actual parameter is x + 7, then it is passed by value to the invoked procedure.Additionally, for compound types we postulate that call by mixed form coincides with call byvariable.So in the call by mixed form the decision whether a speci�c parameter is to be passed by variableor by value is determined for each procedure (or function) call separately and thus not on the basisof the procedure declaration, as is common for other type of parameters.To see the advantages of the call by mixed form consider the following problem.Problem 9 Linear Search. Check if an integer e is present in an array of integers.We write the solution as a procedure.TYPE IntegerVector = ARRAY[1..N] OF INTEGER;PROCEDURE Find(MIX e: INTEGER; a: IntegerVector);VAR i: INTEGER;BEGINSOME i := 1 TO N DO e = a[i] ENDEND Find;Suppose now that x is an uninitialized integer variable and a and b are initialized arrays of integersof type IntegerVector. Then� the call Find(7,a) tests if 7 appears in a;� the call Find(x,a) assigns upon backtracking successively all elements of a to x;� the program fragmentFind(x,a);Find(x,b)tests if the arrays of integers a and b have an element in common; if so it computes such anelement, and otherwise it fails;

20 � the program fragmentFORALL Find(x,a)DO Find(x,b)ENDtests if all elements of a are also elements of b; if so it succeeds and otherwise it fails;� the program fragmentFORALLFind(x,a);Find(x,b)DOWRITE(x)ENDprints all elements that a and b have in common.In the last three cases, the �rst occurrence of x is called by variable and the second by value. So,thanks to the fact that we declared the �rst parameter as a MIX parameter and used equality to assignvalues to it, we can use the procedure Find both to check whether an element is present in a givenarray and to generate all the elements of an array. Combining both types of calls we can build implicitloops.The above instances of behaviour of the Find procedure cannot be reproduced using the customaryparameter mechanisms of Modula-2. Indeed, suppose that instead of the call by mixed form we woulduse call by value. Then if x were uninitialized, the call Find(x,a) would result in a run-time errorand if x were initialized, the program fragment Find(x,a); Find(x,b) would rather check if x occursboth in a and in b. If we used call by variable instead, the program fragment Find(x,a); Find(x,b)would exhibit the same behaviour as for call by mixed form, but the call Find(7,a) would yield acompile time error.5.3 Testing the Status of a VariableThe additions discussed in the preceding two subsections relied in a crucial way on the distinctionbetween initialized and uninitialized variables. In this subsection we go one step further and add tothe language a relation that allows us to perform this test.More speci�cally, we introduce a unary relation KNOWN such that for a variable x of a simple typethe test KNOWN(x) succeeds i� x is initialized. If KNOWN is applied to an expression s which is not avariable of a simple type, the call yields a compile-time error. We denote this extension by KNOWN.As an example, following Sterling & Shapiro (1994, page 176), consider the following procedure thatcomputes the unknown element of the ternary relation underlying the addition operator:PROCEDURE Plus(MIX x,y,z: INTEGER);BEGINIF KNOWN(x); KNOWN(y) THEN z = x+yELSIF KNOWN(y); KNOWN(z) THEN x = z-yELSIF KNOWN(x); KNOWN(z) THEN y = z-xENDEND Plus;For example, if we invoke plus(x,y,10) with x uninitialized and y with value 7, then the procedureassigns value 3 to x. Note that the use of the MIX parameter mechanism and of equality as anassignment is crucial here.To illustrate another natural use of the KNOWN relation consider now the following variant of aproblem from Colmerauer (1990).

21Problem 10 Squares in the rectangle. Cover an integer sized nx�ny rectangle with squares S1; : : : ; Smof integer sizes s1; : : : ; sm. \Covering" means that no two squares overlap and the rectangle is com-pletely �lled in.To solve this problem we use a backtracking algorithm that �lls in all the cells of the rectangle oneby one. For each cell, it checks if it is already covered by some square placed to cover a previous cell;if it is not covered, it looks for a square not already placed to be located with the top-left corner inthe given cell. The algorithm backtracks when none of the available squares can cover the given cellwithout sticking out of the rectangle.Backtracking is implemented by a SOME statement that checks for each square whether it can beput to cover a given cell. The solution is returned via two arrays posX and posY such that for squarek (of size sizes[k]) posX[k], posY[k] are the coordinates of its top-left corner.The two equalities posX[k] = i and posY[k] = j are used both to construct the solution and toprevent a placed square to be used again in a di�erent place.We use the AlreadyCovered procedure to deal with cells that are covered by squares already usedto �ll other cells. For checking that a cell is already covered we look |by means of the KNOWN relation| for an \already placed" square that covers the cell. The call of AlreadyCovered is used as a test.The variables posX and posY as VAR parameters allow us to use the program both to check a givensolution or to complete a partial solution.CONST NX = 33; NY = 32; (* size of the rectangle *)M = 9; (* number of small squares *)TYPE SquaresVector = ARRAY [1..M] OF INTEGER;PROCEDURE AlreadyCovered(i, j: INTEGER; sizes: SquaresVector;VAR posX, posY: SquaresVector);VAR h : INTEGER;BEGINSOME h := 1 TO M DOKNOWN(posX[h]) AND KNOWN(posY[h]);(posX[h] <= i) AND (i < posX[h] + sizes[h]);(posY[h] <= j) AND (j < posY[h] + sizes[h])ENDEND AlreadyCovered;PROCEDURE Squares(sizes: SquaresVector;VAR posX, posY: SquaresVector);VAR i, j, k : INTEGER;BEGINFOR i := 1 TO NX DOFOR j := 1 TO NY DOIF NOT AlreadyCovered(i,j,sizes,posX,posY) THENSOME k := 1 TO M DOsizes[k] + i <= NX + 1;sizes[k] + j <= NY + 1;posX[k] = i;posY[k] = jENDENDENDENDEND Squares;Note that this program does not use any assignment.

226. Summary of Alma-0 featuresIn this paper we described Alma-0 by discussing the extensions of Modula-2 that are included in it.We successively introduced the following nine extensions:� BES: Add boolean expressions to statements.� SBE: Add statement sequences to boolean expressions.� ORELSE: Add the ORELSE statement.� SOME: Add the SOME statement.� COMMIT: Add the COMMIT statement.� FORALL: Add the FORALL statement.� EQ: Generalize equality.� MIX: Introduce a new parameter mechanism: call by mixed form.� KNOWN: Introduce the KNOWN relation, to test whether a variable of simple type is initialized.At this stage, the following features of Modula-2 have been omitted in the current implementationof Alma-0:� The CARDINAL type, sets, variant parts in records, open array parameters, procedure types, andpointer types.� The CASE, WITH, LOOP, and EXIT statements.5� Nested procedures.� Modules, and therefore the EXPORT and IMPORT declarations.It is worth remarking that these features have been omitted only to keep the implementation simpleand they will be considered for future improvements of the language. We do not expect that thesefeatures will introduce any additional problems at the implementation level.7. Declarative SemanticsIn what follows we introduce two semantics for two fragments of Alma-0. The one presented in thissection is declarative and is applicable only to the programs built out of a limited number of constructsthat do not involve assignment. In the next section we present an alternative, operational, semanticsfor a larger subset of Alma-0.Alma-0 has been designed with the view of promoting declarative programming. As this term isoften used to denote di�erent things, let us clarify that in the context of this paper we consider aprogram declarative if its meaning can be described by means of a logical formula that can be obtainedby means of a syntax directed translation. We call then this formula the declarative interpretationof the program. By assigning to this formula its semantic meaning that agrees with the operationalsemantics of the original program we obtain declarative semantics of the program under consideration.Consider now Table 1, in which we denote by T (S) the translation of the program S and where Bdenotes a primary boolean expression.Several remarks are in order.5Note however, that Modula-2 statement LOOP S; IF B THEN EXIT END; T END can be be modelled in Alma-0 asWHILE S; NOT B DO T END.

23Language construct Logical formulaB BNOT S :T (S)S1;S2 T (S1) ^ T (S2)IF T THEN S END T (T)!T (S)IF T THEN S1 ELSE S2 END (T (T) ^ T (S1)) _ (:T (T) ^ T (S2))EITHER S1 ORELSE S2 END T (S1) _ T (S2)FOR i := 1 TO n DO S END 8i 2 [1::n]T (S)SOME i := 1 TO n DO S END 9i 2 [1::n]T (S)FORALL S DO T END 8x(T (S)!T (T))(where x is the list of all free variables of T (S))Table 1: Declarative interpretation1. The logical language should be extended to allow subscripted variables (like in Marcus (1996)) torender correctly the use of these variables. For brevity, we omit here a description of the details ofthis extension.2. The semantics of formulas of this logical language has to di�er from that of the customary �rst-order logic. For example, due to the use of generalized equality the programs x = 0; y = x and y= x; x = 0 are not equivalent. Consequently, the conjunction ^ is not commutative. Further, thescope of both bounded quanti�ers in the formulas 8i 2 [1::n]T (S) and 9i 2 [1::n]T (S) should extendbeyond T (S) to render correctly the meaning of the FOR and SOME statements.To illustrate the problem consider the task of �nding the number of the �rst all-zero row of an N *N matrix x of integers, if any. 6In Alma-0 it can be easily encoded as follows, where for the sake of further discussion we introducedan integer variable found and used an unspeci�ed statement S that should deal with the case whenno all-zero row exists:EITHERSOME i:= 1 TO N DOFOR j := 1 TO N DOa[i,j] = 0ENDEND;found = iORELSESENDThis program gets translated to the formula((9i 2 [1::N] 8j 2 [1::N] a[i; j] = 0) ^ found = i)) _ T (S):With the customary interpretation of the scope of the quanti�ers, the �nal occurrence of i is notbound, while the semantics of the SOME statement stipulates that this occurrence of i is within thescope of the 9i 2 [1::N] quanti�er.To see the arising complications assume now that in the program the variable found is initialized.Then this program checks whether whether a[found; j] = 0 holds for all j in [1::N].6This problem is taken from a contribution to ACM Forum in Communications of ACM, March 1987, p. 195-196by F. Rubin. It generated a lot of controversy, including a response by E.W. Dijkstra in August 1987 issue, because ofRubin's claim that the most natural solution involves a GOTO statement.

24Such a logic interpretation can be achieved by reconsidering the resulting formula after the trans-lation process has been completed. At this stage the bounded quanti�ers could be moved to otherplaces within the formula (like outside of the conjunction in the above formula) to ensure the correctscope. Alternatively, a larger scope could be postulated by assuming that the bounded quanti�ersbind all occurrences of the quanti�ed variable till the end of each disjunct.These considerations show that our future work on semantics of the introduced logical languagecould pro�t from Groenendijk & Stokhof (1991) where an alternative semantics of �rst-order logicis provided. In this semantics both the connectives and the quanti�ers obtain a di�erent, dynamic,interpretation that better suits their use for natural language analysis.3. The occurrences of the SOME and FOR statements within a condition should be translated di�erently.Consider for example the programIFSOME i:= 1 TO N DOFOR j := 1 TO N DOa[i,j] = 0ENDENDTHENfound = iENDagain with the variable found initialized. Because the choice points created by a statement usedwithin a condition are discarded upon termination of the evaluation of the condition (see the end ofSubsection 4.1), this program tests whether found is the least value i in the range [1::n] for whicha[i; j] = 0 holds all j in [1::N] (assuming such a value exists).Consequently, its correct declarative interpretation is obtained by means of the formula�i : i 2 [1::n] ^ 8j 2 [1::N] a[i; j] = 0 : found = iwhere the binding operator �i : � : stands for\if � holds for some value of i, then holds for the least such value of i".In general, a program of the formIFSOME i:=1 TO n DO S END; TTHEN UENDshould be translated to the formula�i : i 2 [1::n] ^ T (S) ^ T (T) : T (U)Similar considerations hold for the FOR statement.4. This declarative interpretation does not deal correctly with equality used as assignment withina condition of the conditional statements. This has to do with the fact that asssignments used inconditions have a permanent e�ect. For example, given an uninitialized variable x, the statement IFNOT (x = 0) THEN TRUE END; y = x assigns to y the value 0, but this cannot be deduced from itsdeclarative interpretation (:(x = 0)! TRUE) ^ y = x.5. This view of declarative programming is very restrictive since it rules out programs involvingthe WHILE and REPEAT loops and recursion. By admitting in the logical language some form of the

25least �xpoint operator (in the style of �-calculus of Scott & de Bakker (1969)) we could also assigna declarative interpretation to programs involving these constructs, so in particular to programsinvolving procedure declarations and procedure calls. However, in presence of negation and recursiona problem arises how to associate then a declarative semantics to the resulting formulas, like to theformula p$:p representing the procedurePROCEDURE p;BEGINNOT pEND pThese di�culties are analogous to the ones that motivated the study of negation in logic program-ming (see e.g. Apt & Bol (1994) for a survey of these issues).Using the above translation process we can assign to several programs here discussed a logicalformula that represents their declarative interpretation. By way of example take our solution toProblem 8 (Eight Queens). The following formula constitutes its declarative interpretation:�(x) � 8column 2 [1::N] 9row 2 [1::N] 8i 2 [1::column� 1](x[i] 6= row ^x[i] 6= row + column� i ^x[i] 6= row + i� column ^x[column] = row):In turn, consider the following programFORALLqueens(x);x[1] > 4DOEITHER x[2] < 4 ORELSE x[3] < 4 ENDENDthat tests whether for all solutions x to the Eight Queens problem such that x[1] > 4 also x[2] < 4 orx[3] < 4 holds. Its declarative interpretation consists of the following formula:8x((�(x) ^ x[1] > 4)! (x[2] < 4 _ x[3] < 4)):The right hand side of Table 1 determines a logical language that could be used to specify programs.By using this table we could translate a speci�cation written in this language into a program thatmeets this speci�cation. As an, admittedly contrived, example consider the formula8i 2 [1::N]9j 2 [1::N] b[j] = a[i]that speci�es that an array b is a permutation of an array a. (Note that this speci�cation is correctonly if a does not contain repeated elements). It translates into the following program that given anarray a with no repeated elements generates in b (upon backtracking) all its permutations:FOR i := 1 TO N DOSOME j:= 1 TO N DOb[j] = a[i]ENDEND

26However, such a \reverse translation" cannot be used in an undiscriminate way as it can yieldprograms that lead to run-time errors. As an example consider the following most natural speci�cationof the Eight Queens problem:8i 2 [1::N � 1] 8j 2 [i+ 1::N] (x[i] 6= x[j] ^ x[i] 6= x[j] + j � i ^ x[i] 6= x[j] + i� j):Its reverse translation yields a program that for an uninstantiated array x causes a run-time errorbecause the test x[i] 6= x[j] involves uninstantiated variables.8. Operational SemanticsWe now move on to the presentation of operational semantics in the style of Hennessy & Plotkin(1979). This semantics provides a better insight into the operational aspects of the introduced languageconstructs. An interesting aspect of the semantics here provided is that it is executable that is, one canuse it to execute a program starting in a given initial state. In this way we could test it by executingit on a number of test programs, including the ones presented here.The work discussed here is a summary of a larger e�ort, reported in Brunekreef (1997), in which anoperational semantics in the same style has been provided to a substantially larger subset of Alma-0.Here we limit ourselves to a subset that involves the most relevant features of the language. Beforewe proceed we provide a short explanation of the ASF+SDF system that was used to de�ne thissemantics.8.1 ASF+SDF Meta-environmentThe ASF+SDF Meta-environment of Klint (1993) is an interactive development environment for thegeneration of interactive programming environments. The generation process is controlled by thede�nition of a programming language, which may include such features as syntax de�nition/checking,type checking, prettyprinting and semantics of programs.SDF is a shorthand for Syntax De�nition Formalism. In SDF both the lexical syntax and thecontext-free syntax of a language are speci�ed in an algebraic style. ASF is a shorthand for AlgebraicSpeci�cation Formalism. In ASF any function may be speci�ed on terms that are constructed ac-cording to the syntax de�ned in an SDF speci�cation. The ASF+SDF speci�cations have a modularstructure. Di�erent parts of a speci�cation can be written down in separate modules. A module canbe imported by another module.ASF+SDF speci�cations are executable. This is achieved by transforming the algebraic equationsinto a term rewriting system. In the speci�cations it is possible to use so-called default equations.A default equation is applied in case no other equation is applicable to a particular term. A moreextensive introduction to the ASF+SDF Meta-environment can be found in van Deursen, Heering &Klint (1996). The ASF+SDF Meta-environment runs on Unix platforms.In the presentation below we �rst discuss the syntax of the considered subset of Alma-0, thenreview several prede�ned modules and �nally present the axioms and rules that de�ne the semantics.These rules are given in a LATEX format that is automatically generated by an \ASF+SDF to LATEX"program.8.2 SyntaxIn what follows we consider statements de�ned by the syntactic category Stat (for statements) usingthe syntactic categories Var (for variables), Exp (for expressions) and Bool (for boolean expressions)that are further unspeci�ed, and the syntactic category StSeq (for statement sequences).Stat ::= Var ``:='' Exp |Bool |KNOWN Var |IF StSeq THEN StSeq ELSE StSeq END |

27WHILE StSeq DO StSeq END |EITHER StSeq ORELSE StSeq END |FORALL StSeq DO StSeq END |COMMIT StSeq ENDStSeq ::= {Stat ``;''}* StatThis subset abstracts away from a number of crucial aspects of Alma-0. In fact, in the syntacticde�nition of Alma-0 there is no distinction between expressions, boolean expressions and statements.Consequently, it is syntactically possible to assign a statement to a variable, something that is se-mantically correct only if the variable is of type BOOLEAN. (This possibility is a side e�ect of the SBEextension and is hardly a useful feature of the language.) In the operational semantics that followsthese issues are ignored.It is straightforward to specify the syntax de�ned above in SDF. We omit this speci�cation.8.3 Prede�ned ModulesIn what follows we shall assume the following ASF+SDF modules.� Basic modules de�ning integer constants, boolean constants and the customary operations onthese constants.� The module Environments that de�nes an \environment" for storing and retrieving variablevalues. An environment records the bindings of values to variables.In this module the following atomic environments and operations on environments are de�ned:{ x 7! v: an atomic environment that consists of a binding of a value v to a variable x.{ E(x) : lookup the value of variable x in environment E .{ E1�E2 : destructively update environment E2 with environment E1. The bindings in E2 forvariables which have a binding in E1 are discarded by this operation, e.g., ([x 7! v]� E)(x)is v and not the value of x in E .{ def(E ; x) : determine whether variable x is de�ned in environment E .� The module Values that declares integer and boolean constants as admitted values for anenvironment. Furthermore, this module de�nes equality of values by means of the function eq.� The module Stack that speci�es a simple generic stack with the customary operations push, popand top. The symbol ? denotes the empty stack and the operation ./ speci�es the constructorfunction for the stack.This module is needed to manage the stack of choice points (de�ned below) created by thenondeterministic statements of Alma-0.� The module Con�guration that manages \con�gurations". A con�guration is a triple� S; E ; C �that contains a statement sequence S, an environment E and a stack of choice points C. In turn,a choice point is a pair � S; E � that contains a statement sequence S and an environment E .These data structures are speci�ed in this module. Furthermore, we have two functions (fst andsnd) that yield respectively the �rst and the second element of a choice point.The full description of these modules can be found in Brunekreef (1997) and is omitted.

288.4 SemanticsThe core of the de�nition of the Alma-0 semantics consists of the speci�cation of two functions: thefunction eval, de�ning the evaluation of an expression, and the function sem, de�ning the semanticsof a statement sequence.The function eval has two arguments: the expression to be evaluated and the environment. Thefunction produces a pair with a new environment (recall that in Alma-0 an assignment can be a partof an expression, like in (x:=1) AND TRUE), and the result of the evaluation. The rules de�ning theevaluation of expressions are omitted with the exception of the following ones.The EQ feature. This feature of Alma-0 is speci�ed by three rules. In their conditions the booleanfunction uninitVar is used. This function indicates whether an expression equals an uninitializedvariable. We omit the rules de�ning this function.In the �rst EQ rule both sides of the equality test can be evaluated (are not uninitialized variables).We have then the usual equality test.uninitVar(e1; E) = false, uninitVar(e2; E) = false,eval[[e1]](E) = < E1; v1 >, eval[[e2]](E1) = < E2; v2 >eval[[e1 = e2]](E) = < E2; eq(v1; v2) >In the second rule the lefthand-side of the equality test is an uninitialized variable. The value of theexpression at the righthand-side is assigned to the variable by applying an assignment statement andthe function sem.uninitVar(e1; E) = true, e1 = x , sem(� x := e2; E ; ? �) = � ; E1; ? �eval[[e1 = e2]](E) = < E1; true >The third rule is the symmetric counterpart of the second one and is omitted.The KNOWN statement. This statement is a boolean expression. It is checked, using the environment,whether a variable is initialized. uninitVar(x ; E) = falseeval[[KNOWN(x)]](E) = < E ; true >eval[[KNOWN(x)]](E) = < E ; false >otherwiseThe second rule is a default equation. By de�nition, it is applied in case no other rule is applicableto a particular term.We continue with the de�nition of the semantics of the program statements using the functionsem. We present here only the rules that de�ne the semantics of the most interesting features ofAlma-0, those de�ned in Subsection 8.2. The complete list of rules can be found in Brunekreef (1997).The sem function operates on a sequence of program statements, denoting the still to be executedpart of the program. Together with the environment and a stack of choice points, this statementsequence forms a con�guration triple (see Subsection 8.3). The sem function takes as input a con�g-uration and produces a new con�guration with the sequence of remaining program statements, a newenvironment and a new stack of choice points. The recursive application of the sem function to theinput con�guration yields the semantics of the initial sequence of statements.More precisely, a successful computation eventually results in a con�guration with the empty state-ment sequence. This is speci�ed by the following axiom.sem(� ; E ; C �) = � ; E ; C�

29In turn, a computation fails if a non-empty statement sequence is produced, none of the rules for thesem function applies and no backtracking is possible (the stack of choice points is empty). A failureis indicated by a non-empty statement-sequence S+ as the �rst element of the con�guration triple.Together with the second element of the con�guration triple (the environment), the �rst statement ofS+ reveals the cause of the failure. This is speci�ed in a default equation for the function sem.sem(� S+; E ; ? �) = � S+; E ; ? � otherwiseAssignment. The assignment is dealt with in the customary way: the expression at the right-handside of the assignment is evaluated, its value is assigned to the variable at the left-hand side and theenvironment is updated. eval[[ex]](E) = < E1; v >, [x 7! v] � E1 = E2sem(� x := ex; S; E ; C�) = sem(� S; E2; C�)The BES feature. A boolean expression as statement is dealt with by evaluating the booleanexpression with the function eval. If the outcome is true, the computation continues in the newenvironment. eval[[ex]](E) = < E1; true >sem(� ex; S; E ; C �) = sem(� S; E1; C �)If the outcome is false, two cases need to be distinguished.Case 1: The stack of choice points is empty. Then the computation fails but changes in the environ-ment are retained. (This is necessary in case the boolean expression is used within a condition.)eval[[ex]](E) = < E1; false >sem(� ex; S; E ; ? �) = � ex; S; E1; ? �Case 2: The stack of choice points is not empty. Then backtracking takes place.eval[[ex]](E) = < E1; false >sem(� ex; S; E ; CP ./ C �) = sem(� fst(CP); snd(CP); C�)The IF statement: IF T THEN S1 ELSE S2 END. The condition, that is the statement sequence T ,is evaluated using the function sem. If the computation succeeds (that is, the result is a con�gura-tion with the empty statement sequence), the statement sequence in the THEN branch is evaluated.Otherwise, the statement sequence in the ELSE branch is evaluated.sem(� T; E ; ? �) = � ; E1; C1 �sem(� IF T THEN S1 ELSE S2 END; S3; E ; C�) = sem(� S1; S3; E1; C �)sem(� T; E ; ? �) = � S+; E1; ? �sem(� IF T THEN S1 ELSE S2 END; S3; E ; C�) = sem(� S2; S3; E1; C �)Note that, conforming to the discussion at the end of Subsection 4.1, the remaining statement sequenceis executed in the new environment E1 generated by T , but with respect to the initial stack C.The WHILE statement: WHILE T DO S END. The condition is evaluated. Depending on the outcome,the loop is `unrolled' one step or skipped.sem(� T; E ; ? �) = � ; E1; C1 �sem(� WHILE T DO S1 END; S2; E ; C �) = sem(� S1; WHILE T DO S1 END; S2; E1; C�)

30 sem(� T; E ; ? �) = � S+; E1; ? �sem(� WHILE T DO S1 END; S2; E ; C�) = sem(� S2; E1; C�)Here the same remarks concerning the new environment and the initial stack of choice points applyas in the case of the IF statement.The ORELSE statement: EITHER S1 ORELSE S2 END. The �rst branch is evaluated and the remainingalternative is pushed on the stack.sem(� EITHER S1 ORELSE S2 END; S3; E ; C�) = sem(� S1; S3; E ; push(� S2; S3; E � ; C) �)The COMMIT statement: COMMIT S END.Case 1: The computation of S succeeds. Then the computation continues without the modi�cationof the stack. sem(� S; E ; ? �) = � ; E1; C1 �sem(� COMMIT S END; S1; E ; C�) = sem(� S1; E1; C�)Case 2: The computation of S fails. Then backtracking takes place.sem(� S; E ; ? �) = � S+; E1; ? �sem(� COMMIT S END; S1; E ; CP ./ C�) = sem(� fst(CP); snd(CP); C �)The FORALL statement: FORALL S DO T END. The semantics of the FORALL statement is de�nedin a separate function semFA, speci�ed below. A separate function is needed because evaluation ofthe FORALL statement requires a local stack of choice points, generated by the statement sequence S.Within the context of the semFA function, the con�guration stack is used for this local stack. Wedistinguish two cases:Case 1: The computation of the FORALL statement succeeds. We continue with the new environmentand the initial stack. semFA(� FORALL S DO T END; E ; ? �) = � ; E1; ? �sem(� FORALL S DO T END; S1; E ; C�) = sem(� S1; E1; C�)Case 2: The computation of the FORALL statement fails. Then backtracking takes place.semFA(� FORALL S DO T END; E ; ? �) = � S+; E1; ? �sem(� FORALL S DO T END; S1; E ; CP ./ C �) = sem(� fst(CP); snd(CP); C�)The function semFA speci�es the semantics of an isolated FORALL statement. As mentioned before,the stack in the input con�guration is now the stack of choice points created by S. We distinguishthree cases:Case 1: The computation of S fails. If the stack of choice points is empty, then the FORALL statementis skipped. This means that the semFA function returns a con�guration with the empty statementsequence, the initial environment and the empty stack.sem(� S; E ; ? �) = � S+; E1; ? �semFA(� FORALL S DO T END; E ; ? �) = � ; E ; ? �If the stack of choice points is not empty, then backtracking takes place (the next choice point fromthe stack created by S is selected).sem(� S; E ; ? �) = � S+; E1; ? �semFA(� FORALL S DO T END; E ; CP ./ C�) =semFA(� FORALL fst(CP) DO T END; snd(CP); C�)

31Case 2: The computation of S succeeds, but the computation of T fails. Then the computation ofthe FORALL statement fails.sem(� S; E ; C �) = � ; E1; C1 �, sem(� T; E1; ? �) = � S+; E2; ? �semFA(� FORALL S DO T END; E ; C�) = � S+; E2; ? �Case 3: The computations of both S and T succeed.Subcase 3.1: After the computation of S no stack of choice points is left. The computation of theFORALL statement succeeds. The resulting environment is the initial environment, updated with thechanges that resulted from the computation of T . These changes are computed using the functionchanges speci�ed below.sem(� S; E ; ? �) = � ; E1; ? �, sem(� T; E1; ? �) = � ; E2; C2 �, changes(E1; E2) = E3semFA(� FORALL S DO T END; E ; ? �) = � ; E3 � E ; ? �Subcase 3.2: After the computation of S the stack of choice points is not empty. The function semFAis recursively called with S taken from the top of the stack and E equal to the environment taken fromthe top of the stack, updated with the changes resulting from the computation of T . For the resultingenvironment both the changes due to the computation of T and the changes due to the recursive callof semFA are used to update the initial environment.sem(� S; E ; C �) = � ; E1; CP ./ C1 �, sem(� T; E1; ? �) = � ; E2; C2 �,changes(E1; E2) = E3, semFA(� FORALL fst(CP) DO T END; E3 � snd(CP); C1 �) = � ; E4; ? �semFA(� FORALL S DO T END; E ; C�) = � ; changes(E3 � snd(CP); E4) � (E3 � E); ? �If the recursive call of semFA fails, then the whole computation still fails.sem(� S; E ; C �) = � ; E1; CP ./ C1 �, sem(� T; E1; ? �) = � ; E2; C2 �,changes(E1; E2) � snd(CP) = E3,semFA(� FORALL fst(CP) DO T END; E3 � snd(CP); C1 �) = � S+; E4; ? �semFA(� FORALL S DO T END; E ; C�) = � S+; E4; ? �The function changes(E1; E2) isolates the changes that have been made to the environment whileexecuting the T part of the FORALL statement (the `permanent' changes). E1 is the environment beforethe computation of T , E2 is the environment after the computation of T .The �rst rule isolates a variable binding the value of which has been changed in the computationof T. eq(v1; v2) = falsechanges([ae�1 x 7! v1 ae�2]; [ae�3 x 7! v2 ae�4]) = [x 7! v2] � changes([ae�1 ae�2]; [ae�3 ae�4])The second rule isolates the binding of a new variable, introduced in the computation of T.def(E ; x) = falsechanges(E ; [ae�1 x 7! v ae�2]) = [x 7! v] � changes(E ; [ae�1 ae�2])If none of these rules apply, the function results in an empty environment, as speci�ed by the defaultrule. changes(E1; E2) = [] otherwiseThis concludes our presentation of the operational semantics of the fragment of Alma-0 introduced inSubsection 8.2. Let us summarize now the salient aspects of it.

32 1. In contrast to the customary structured operational semantics of Hennessy & Plotkin (1979)there is no rule that deals with the statements composition (\;"). Instead, the sem functionoperates on a sequence of program statements that form the still to be executed part of theprogram.This choice turned out to be necessary to implement backtracking from an arbitrary positionin the program text. This feature of Alma-0 was taken care of while dealing with the ORELSEstatement. In this case the whole alternative S2;S3 to the current sequence of statements S1;S3was pushed on the stack.2. To deal with backtracking the stack of choice points was introduced. It was explicitly manipu-lated in a number of places, namely� in the BES and COMMIT extensions, to handle backtracking,� in the ORELSE extension, to retain the remaining alternative,� while dealing with the IF and WHILE statements, to ensure that computation continues withthe original stack of the choice points,� in the FORALL extension, to implement the iteration over all choice points.3. The auxiliary function semFA was introduced to deal with the most complicated case, thatof the FORALL statement. This was needed to handle the execution of each FORALL statementseparately with the stack of choice points initially empty.9. ImplementationIn this section we describe the implementation of Alma-0. The compiler consists of about 6000 linesof ANSI C, Flex (see Paxson (1995)) and Bison (see Donnoly & Stallman (1995)) code. Its detaileddescription can be found in Partington (1997). At this stage no error recovery is provided and nooptimization has been yet considered. The compiler runs on all Unix platforms.9.1 Alma Abstract ArchitectureThe Alma Abstract Architecture (AAA) is the virtual architecture used during the intermediate codegeneration phase of the Alma-0 compiler.The AAA combines the features of the abstract machines for imperative languages and for logicprogramming languages. To the best of our knowledge this abstract machine design is new. Thecompiler compiles the Alma-0 programs into AAA programs. At this stage the AAA instructions aretranslated into C statements.As the Alma-0 language itself, the AAA aims to combine the best of both worlds; elements weretaken from virtual machines used to compile imperative languages (in particular the RISC architecturedescribed in Wirth (1996, pages 55{59), and from the WAM machine used to compile a logical language(see A��t-Kaci (1991)).Still, the AAA resembles most the virtual machines used in the compilation of imperative languages.The additions made to provide for the extensions of the Alma-0 language are:� The failure handling instructions ONFAIL, FAIL.� The log control instructions CREATELOG, REPLAYLOG and REWINDLOG.� The automatic recording of old values in assignment instructions ADD, SUB, MUL, DIV, MOD, MOVE,and CLEAR.Although the current implementation of the AAA entails translating the AAA instructions into Cstatements, the design of the AAA is such that it should be possible to translate them into machinecode.

339.1.1 Backtracking: Choice points, failure handling, and log creation An important di�erence, onenotices, when comparing the AAA to the WAM, is the division of the choice point notion into theseparate notions of failure handling and log creation which, when taken together, can be used toimplement a choice point.A failure handler is installed by the ONFAIL instruction, whose execution saves the location at whichexecution should continue in case of a failure. When a failure is subsequently generated by the FAILinstruction, execution continues at this previously saved location. Compare the failure handling notionto the exception handling mechanism in languages such as C++ (see Ellis & Stroustrup (1990)) andJava (see Gosling, Joy & Steele (1996)). It is used in the Alma-0 compiler to implement the BES andSBE extensions.When a log is created by the CREATELOG instruction, from that point on, every value that is aboutto be changed is recorded in the log. When the log is played back by the REPLAYLOG instruction,the recorded values are restored. The log can be compared to the trail described in A��t-Kaci (1991),and is used in the Alma-0 compiler to implement the ORELSE, SOME, FORALL and COMMITextensions.A choice point that o�ers a choice between two execution branches is formed by creating a new log,setting up a failure handler, and executing the �rst branch. When a failure occurs, the failure handlerwill be called, which will replay the log and execute the second branch.9.1.2 The log administration system More than one log may have been created at one time, butonly one log is the active log. When a value is recorded, it is recorded in the active log, if there is one.The log administration system behaves as follows:� At the beginning of the execution of an Alma-0 program there is no (active) log.� When a log is created by the CREATELOG instruction, then the currently active log is deactivated,and the new log becomes the active log.� When an assignment instruction that requires recording is executed, the current value of thetarget is saved in the active log, if any, before the assignment is performed.� When a log is replayed by the REPLAYLOG instruction, the values which have been recorded inthe log are restored, and the log previously deactivated is made active again (if there was noprevious log, there is no longer an active log). Finally, the log just replayed is discarded.� When the REWINDLOG instruction is executed, the active log is discarded and the previous logis activated, until the log indicated by the second operand becomes active. The values in thediscarded logs are not restored.As we can see, the logs behave mostly like a stack of logs. However, the FORALL statement breaksthe analogy; when execution of the DO part starts, the active log is remembered, and the log, whichwas active before the FORALL statement, is activated. When execution of the DO part is �nished, thelog that was remembered is activated again, and any logs created during execution of the DO part arediscarded.9.1.3 AAA registers The AAA has eight registers, the most peculiar ones are the following three.LP the log pointer register. It contains an opaque value used by the run-time system to handle logadministration; one should only write values to it that have been read from it before, or let theCREATELOG, REPLAYLOG, and REWINDLOG instructions handle this register.

34BP the failure frame pointer register contains a pointer to the last failure frame allocated on thestack7. Failure frames are created by the ORELSE, SOME, and FORALL statements, as well aswhen a sequence of statements is used as a boolean expression. They hold the saved values of anumber of registers (depending upon the statement that created the frame), and the address ofthe failure handler (see section 9.1.1).EP the environment frame pointer register contains a pointer to the last procedure call stack frame(comparable to the frame pointer found in actual CPU architectures). Environment frames arecreated when a procedure is called, and hold the actual parameters, the saved values of a numberof registers, the return address, and the local variables.9.2 Intermediate Code GenerationNext, we describe the details of the AAA code generation for the language constructs that deal withAlma-0 extensions.We use a syntax directed translation technique, therefore each Alma-0 language construct is trans-lated into AAA instructions, as soon as it has been recognized by the parser. The parsing strategy isbottom-up, which ensures that code has already been generated for the language constructs containedby the current construct, i.e., those language constructs that are its descendants in the abstract syntaxtree. This means that the result of computational code can be used, and that conditional code andits failure handling label can be correctly placed to get the correct ow of control.The translation of the traditional language constructs is as usual and we only discuss those trans-lations that deal with Alma-0's extensions. For the sake of brevity, we con�ne ourselves to the SBE,BES, ORELSE and FORALL extensions and that of the procedure call, which are the most inter-esting ones.9.3 Pseudo codeBecause the actual instruction sequences generated can be quite long, we will use pseudo code toillustrate the idea. The following language constructs are used in the pseudo code:� create frame and save values(<frame-type>, <registers>) is a \function", which createsroom on the stack for the speci�ed type of frame, and stores the values of the speci�ed registersin the frame. The base address of the new frame is returned.� (<registers>) := restore values(<frame-type> <frame-base-address>) is a \function",which restores the values of the speci�ed registers from the speci�ed type of frame.� destroy frame(<frame-type>) is a \function", which destroys the speci�ed type of frame.� (<registers>) := restore values and destroy frame(<frame-type>,<frame-base-address>) is a \function", which restores the values of the speci�ed registers, anddestroys the speci�ed type of frame.� x := y and IF x op y THEN a ELSE b END statements have the obvious meaning and aretranslated into instruction of AAA in a straightforward way.� Although the instruction REWINDLOG is never explicitly used in the pseudo code fragments,assignment to the LP register is actually implemented using the REWINDLOG instruction, whichtakes care of cleaning up logs which would otherwise remain allocated. Only for the correcttranslation of the FORALL statement is direct assignment to the LP register needed.7We denote this register by \BP" instead of \FP" for two reasons; the abbreviation \FP" is usually reserved for theframe pointer, which is more like the AAA's EP register, and \B" is the name of the register in the WAM, that providesa similar function.

359.3.1 Translating BES and SBE When a boolean expression (be) is used as a statement (s), thefollowing code is generated:be.instr;BRA true_lab;be.false_lab:FAIL;true_lab:� If the boolean expression evaluates to TRUE, execution continues normally, after the label true lab.� If the boolean expression evaluates to FALSE, the FAIL instruction is executed, causing a jumpto the last failure point.When a list of statements (s) is used as a boolean expression (be), the following code is generated:BP := create_frame_and_save_values(SBE_FRAME, LP, BP, EP);temp := BP;ONFAIL fail_lab;s;(LP, BP, EP) := restore_values_and_destroy_frame(SBE_FRAME, temp)BRA succeed_lab;fail_lab:(LP, BP, EP) := restore_values_and_destroy_frame(SBE_FRAME, BP)BRA be.false_lab;succeed_lab:� If s succeeds, the saved values are restored, and execution continues normally. Because BP maypoint to a frame created during the execution of s, temp is used instead as the pointer to theoriginal frame.� If s fails, the saved values are restored, and a jump is made to the new false continuation labelbe.false lab. Because this is the failure handler installed at the beginning, the register BP willnow point to the correct frame.9.3.2 Translating ORELSE The statementEITHER s ORELSE t ORELSE u END;is translated into:BP := create_frame_and_save_values(ORELSE_FRAME, BP, EP)CREATELOG;ONFAIL second_branch_lab;s;BRA continue_lab;

36second_branch_lab:REPLAYLOG;EP := restore_values(ORELSE_FRAME, BP)CREATELOG;ONFAIL final_branch_lab;t;BRA continue_lab;final_branch_lab:REPLAYLOG;EP := restore_values(ORELSE_FRAME, BP)BP := restore_values_and_destroy_frame(ORELSE_FRAME, BP);u;continue_lab:� A failure handler is installed and a log is created for all but the last branch.� If the execution of a branch (but not the last one) fails, the log is replayed, and the next branchis tried.� If execution of the last branch fails, no special action should be performed by the ORELSEstatement, and therefore no failure handler is installed and no log is created, for the last branch.This implementation is similar to the way choice points are dealt with in WAM (see A��t-Kaci (1991,Section 4.2)), with the addition of the log administration, which is speci�c for the design of Alma-0.9.3.3 Translating FORALL The statementFORALL s DO t ENDis translated into:BP := create_frame_and_store_values(FORALL_FRAME, LP, BP);saveorigbp := BP;CREATELOG;ONFAIL forall_done_lab;s;savesp := SP;savebp := BP;savelp := LP;(LP, BP) := restore_values(FORALL_FRAME, saveorigbp);t;LP := savelp;BP := savebp;SP := savesp;FAIL;

37forall_done_lab:REPLAYLOG;BP := restore_values_and_destroy_frame(FORALL_FRAME, BP);� Before t is executed, the context active before the FORALL statement is restored. This ensuresthat the assignments in t are not undone when backtracking takes place in s.� An implicit COMMIT statement surrounds the DO part of the FORALL statement, i.e., t. Thisdeletes any choice points created during execution of t. In fact, the pseudo code between s;and FAIL; (except of the line (LP, BP) := restore values(...);) implements exactly theAlma-0 statement COMMIT t END.� The FAIL instruction causes a jump to the last failure handler installed in s. When no morefailure handlers are left in s, execution will continue at forall done lab. This approach issimilar to that of the failure-driven loop in Prolog.9.3.4 Translating procedure call A procedure call in the AAA is a handled slightly di�erently froma procedure call in a classic virtual machine. The procedure call proc; translates to:push_actual_parameters;EP := create_frame_and_save_values(PROCCALL_FRAME, EP, SP);JSR proc.label;(EP, S1) := restore_values(PROCCALL_FRAME, EP);IF S1 < BP THENdestroy_frame(PROCCALL_FRAME);END;where S1 is a general purpose register and JSR is the AAA jump instruction.� If a choice point was created in the callee, execution may, at a later point, continue in the bodyof the procedure. When that happens, its local variables should be accessible and should havethe values they had the �rst time. Therefore the stack frame is not destroyed if the failure frameregister is equal to or greater than the stack pointer.9.4 Implementation of the AAAFinally, we discuss the translation of the AAA instructions into C statements. For most AAA statementssuch translation is straightforward. Therefore, we only explain one speci�c aspect of translation,namely the log administration.The log administration system is an important part of the AAA and its performance has a largeimpact on the overall performance of the AAA. The logs are kept in a linked list. The active log is atthe front of the list, and the previously active log is its successor.For every memory block the value of which is recorded in the log, a log entry is created. The logentries are kept in a binary search tree, as well as in a singly linked list. The binary search tree, whichuses the address of the memory block as its key, is used in the log administration system to determinewhether a memory block starting at the same address has already been recorded in this log. Thelinked list keeps the log entries in the order they were recorded; new log entries are added to the frontof the list. Since traversing a binary tree can be computationally expensive, when the log is replayed,just the linked list is traversed front-to-back.Because only the address of a memory block, and not its size, is used as the key for the binarysearch tree, one memory location is recorded in the log twice, when it is contained by two overlappingmemory blocks being recorded. Fortunately, the front-to-back traversal of the singly linked list usedwhen replaying the log, causes its oldest value to be restored last. Therefore, the singly linked list isactually essential to the correct functioning of the log administration system.

3810. Conclusions10.1 Related WorkA departure point for our considerations was the work of Cohen (1979), who surveys some simpleprimitives for nondeterministic programming within the imperative programming framework.These primitives involve a nondeterministic choice, here adopted as an ORELSE statement, a pa-rameterized nondeterministic choice, here adopted as a SOME statement, and the failure and successstatements with the expected meaning. The failure and success statements are present in many im-perative languages that support backtracking, the most known of them being Icon (see Griswold &Griswold (1983)) and SETL (see Schwartz, Dewar, Dubinsky & Schonberg (1986)).The language Icon allows for nondeterministic constructors similar to our ORELSE and SOME state-ments. In order to explore the full set of branches of a nondeterministic construction the user can usethe every statement, which resembles our FORALL statement. However, in Icon all the choice pointscreated inside the body of a procedure are erased as soon as the procedure is left. To maintain choicepoints through procedure calls, the user must resort to the explicit suspend expression. Unfortunately,the suspension mechanism of Icon, di�erently from our proposal, does not have a clear counterpart indeclarative semantics.In the language SETL nondeterminism is implemented by means of the built-in function ok whichreturns both true and false in two di�erent branches. Therefore the Alma-0 statement EITHERS ORELSE T END can be implemented in SETL by if ok then S else T end. However in SETL,di�erently from Alma-0, only those variables explicitly marked as \backtracking" ones have their valuesrestored upon backtracking. SETL also provides the succeed primitive which resembles the COMMITstatement in Alma-0. In particular, the invocation of succeed erases the most recent choice point leftopen by a previous ok invocation.In Alma-0 we follow the approach taken in the 2LP language of McAloon & Tretko� (1995) andidentify boolean expressions and statements. As a result failure and success statements come for free| they are simply booleans expressions used as statements and that evaluate to FALSE, respectivelyTRUE. This makes the resulting programs conceptually simpler. Of all existing languages, 2LP (whichstands for \logic programming and linear programming") is closest to the spirit of Alma-0. Thelanguage supports the extensions discussed in Sections 2 and 3. The FORALL statement is availablein 2LP a limited way by means of the find all construct that corresponds to FORALL S DO TRUEEND. This language uses C syntax and has been designed for constraint programming in the area ofoptimization. We shall return to it in in the next subsection.In the realm of functional programming automatic backtracking is supported by the languageMICRO-PLANNER of Sussman, Winograd & Charniak (1970), which is an implemented fragment ofits theoretical version PLANNER of Hewitt (1971). In addition to backtracking, MICRO-PLANNERsupports explicit manipulation of program states and provides some deductive and pattern matchingmechanisms. Program manipulations are dealt with by the FRAME command that allows the user tostore the program state and with the CONTINUE command that restarts the execution from a storedstate.However, MICRO-PLANNER (and its successor CONNIVER of Sussman & McDermott (1972))is a Lisp-based language and, di�erently from our proposal, it lacks the full capability of imperativeprogramming languages. In particular, it supports neither strong type checking nor powerful controlstructures.On the logic programming side we would like to mention here the work that dealt with addition ofarrays and bounded quanti�ers (that correspond to the FOR and SOME loops) to the logic programmingparadigm. Arrays in logic programming were introduced by Eriksson & Rayner (1984).Bounded quanti�ers and arrays were used in logic programming in Klu�zniak & Mi lkowska (1997)in which a speci�cation language Spill was introduced that allows us to write executable, typed,speci�cations in the logic programming style. (The original work on this language dates from 1991.)For related references see Voronkov (1992), Barklund & Bevemyr (1993), and more recently Apt(1996).

39Finally, let us mention that the initial work on the design of Alma-0 was reported in Apt & Schaerf(1997).10.2 Towards Imperative Constraint ProgrammingIn this paper we presented the programming language Alma-0. In our opinion Alma-0 makes clearthat many useful aspects of the logic programming paradigm, and more generally of declarativeprogramming, can be amalgamated in a natural way with the imperative programming paradigm.Also, it shows that some algorithmic problems can be solved in a simpler way when drawing on bothprogramming paradigms.The language Alma-0 was not a goal in itself but rather an intermediate stage on the road towardsa realization of a strongly typed constraint programming language that combines the advantages oflogic and imperative programming.As already mentioned in Subsection 5.1, our generalized use of equality treats (some forms of)equality as a constraint. In fact, in our approach we wish to perceive constraints as primary booleanexpressions. Depending on the type and syntax of their operators and operands we have then equalityconstraints, boolean constraints, linear integer equality constraints, linear real inequality constraints,etc.The use of types should allow us to extend the advantages of strong typing to constraint program-ming: their use should lead to a simple \compartmentalization" of the constraint store and shouldallow us to catch simple errors at compile time and report other obvious errors at run-time. Thesebene�ts are di�cult to realize within the logic programming framework.To clarify why we feel that we remained upward compatible with the future extensions to constraintprogramming in the imperative programming style, let us return to the 2LP language of McAloon &Tretko� (1995). In 2LP there are two types of variables: the \customary", programming, variables andthe continuous variables (the name derives from their use in mathematics). The continuous variablesvary over the real interval [0;+1) and can be either simple ones or arrays. The only way thesevariables can be modi�ed is by imposing linear constraints on them. In the most extreme case thesevariables can be assigned a speci�c value by means of an equality constraint. Whenever a constraintis added, its feasibility w.r.t. the old constraints is tested by means of an internal simplex-basedalgorithm.Even though at �rst sight the programming examples discussed in this paper seem to have nothingto do with constraints, it turns out that many of the presented programs can be directly executed bythe 2LP system (after appropriate syntactic modi�cations that have to do with the C-based syntaxof 2LP).The reason is that our generalized use of equality and the use of VAR and MIX parameter mechanismcan be modelled in 2LP by means equality constraints and continuous variables passed as actualparameters. Consequently, our solutions to the Remarkable Sequence Revisited problem (Problem 7),the Eight Queens problem (Problem 8) and most of the multiple uses of them discussed in Section 5can be reproduced in 2LP once the relevant arrays are declared as continuous.It is useful to mention here that in 2LP the assignments are not \undone" upon backtracking,in contrast to the constraints imposed on continuous variables. Consequently, our solution to theKnapsack problem (Problem 6) cannot be reproduced within 2LP because it relies upon backtrackingover assignment.The above analysis shows that Alma-0 indeed realizes some simple uses of constraints withoutintroducing them explicitly and seems to support our view about the upward compatibility of Alma-0with imperative constraint programming. In our future work we plan to focus on the use of constraintpropagation in presence of the features here introduced, a mechanisms that is absent in 2LP.We conclude by mentioning two recent alternative approaches to constraint programming that lieoutside the realm of logic programming. The �rst is the ILOG system of Puget (1994) in whichconstraint programming (on �nite domains) is realized in the form of a C++ class. So in ILOGconstraint programming is not integrated into the underlying imperative language, C++, but rather

40\imported" in the form of a library.The other is CLAIRE, a high-level functional and object-oriented language of Caseau & Laburthe(1996). CLAIRE was designed to use constraint programming techniques to deal with operationsresearch problems. In CLAIRE constraints are represented as objects and rule processing capabilitiescan be used to implement constraint propagation. CLAIRE is a complete programming system withseveral advanced tools available. It has been successfully used to deal with jobshop scheduling andvarious instances of the travelling salesman problem.AcknowledgementsWe would like to thank Nissim Francez and Feliks Klu�zniak for detailed comments on this paper, andKen McAloon and Carol Tretko� for useful discussions concerning 2LP and its implementation. All�ve referees of Apt & Schaerf (1997) provided us with useful suggestions.This work has been partly carried out while the fourth author was visiting CWI in Amsterdam, aspart of the ERCIM Fellowship Programme �nanced by the Commission of the European Communities.ReferencesA��t-Kaci, H. (1991), Warren's Abstract Machine: A Tutorial Reconstruction, The MIT Press, Cam-bridge, Massachusetts.Apt, K. R. (1996), `Arrays, bounded quanti�cation and iteration in logic and constraint logic pro-gramming', Science of Computer Programming 26(1-3), 133{148.Apt, K. R. (1997), From Logic Programming to Prolog, Prentice-Hall, London, U.K.Apt, K. R. & Bol, R. (1994), `Logic programming and negation: a survey', Journal of Logic Program-ming 19-20, 9{71.Apt, K. R. & Schaerf, A. (1997), Search and imperative programming, in `Proc. 24th AnnualSIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL '97)', ACMPress, pp. 67{79.Barklund, J. & Bevemyr, J. (1993), Prolog with arrays and bounded quanti�cations, in A. Voronkov,ed., `Logic Programming and Automated Reasoning|Proc. 4th Intl. Conf.', LNCS 698, Springer-Verlag, Berlin, pp. 28{39.Barr, A., Feigenbaum, E. A. & Cohen, P. R. (1981), The Handbook of Arti�cial Intelligence (volume1), HeurisTech, Stanford.Brunekreef, J. (1997), Annotated algebraic speci�cation of the syntax and semantics of the program-ming language Alma-0, Technical report, Department of Mathematics, Computer Science, Physics& Astronomy, University of Amsterdam, The Netherlands. To appear.Bylander, T. (1991), Complexity results for planning, in `Proceedings of the Twelfth InternationalJoint Conference on Arti�cial Intelligence (IJCAI-91)', pp. 274{279.Caseau, Y. & Laburthe, F. (1996), Introduction to the CLAIRE programming language, Technicalreport, Departement Math�ematiques et Informatique, Ecole Normale Sup�erieure, Paris, France.Coelho, H. & Cotta, J. C. (1988), Prolog by Example, Springer-Verlag, Berlin.Cohen, J. (1979), `Non-Deterministic algorithms', ACM Computing Surveys 11(2), 79{94.Colmerauer, A. (1990), `An introduction to Prolog III', Communications of ACM 33(7), 69{90.Donnoly, C. & Stallman, R. (1995), Bison, the YACC-compatible Parser Generator, Free SoftwareFoundation, Cambridge, Massachusetts. Available online athttp://www.math.utah.edu/docs/info/bison toc.html.Ellis, M. E. & Stroustrup, B. (1990), The Annotated C++ Reference Manual, Addison Wesley, Read-ing, Massachusetts.

41Eriksson, L.-H. & Rayner, M. (1984), Incorporating mutable arrays into logic programming, in S. �A.Tarnlund, ed., `Proc. Second Int'l Conf. on Logic Programming', Uppsala University, pp. 101{114.Fikes, R. E. & Nilsson, N. J. (1971), `STRIPS: A new approach to the application of theorem provingto problem solving', Arti�cial Intelligence Journal 2, 189{208.Gosling, J., Joy, B. & Steele, G. (1996), The Java Language Speci�cation, Version 1.0, Sun Microsys-tems. Available online athttp://java.sun.com/docs/language specification/index.html.Griswold, R. E. & Griswold, M. T. (1983), The Icon Programming Language, Prentice-Hall, EnglewoodCli�s, New Jersey, USA.Groenendijk, J. & Stokhof, M. (1991), Two theories of dynamic semantics, in J. van Eijck, ed.,`Proceedings of the 6th Annual Symposium on Logic in Computer Science (LICS)', Amsterdam,The Netherlands, pp. 55{64.Hennessy, M. C. B. & Plotkin, G. D. (1979), Full abstraction for a simple programming language,in `Proceedings of Mathematical Foundations of Computer Science', Lecture Notes in ComputerScience 74, Springer-Verlag, New York, pp. 108{120.Hewitt, C. (1971), Procedural embedding of knowledge in PLANNER, in `Proc. of the 2th Int. JointConf. on Arti�cial Intelligence (IJCAI-71)'.Klint, P. (1993), `A meta{environment for generating programming environments', ACM Transactionson Software Engineering and Methodology 2(2), 176{201.Klu�zniak, F. & Mi lkowska, M. (1997), `Spill: A logic language for writing testable requirementsspeci�cations', Science of Computer Programming 18(2 & 3), 193{223.Marcus, L. (1996), `Syntactic and semantic dependence of array-arithmetic sentences, with an appli-cation to program veri�cation', Fundamenta Informaticae 27(1), 77{100.McAloon, K. & Tretko�, C. (1995), 2LP: Linear programming and logic programming, in P. V.Hentenryck & V. Saraswat, eds, `Principles and Practice of Constraint Programming', MIT Press,pp. 101{116.Partington, V. (1997), Implementation of an imperative programming language with backtracking,Technical Report P9712, Department of Mathematics, Computer Science, Physics & Astronomy,University of Amsterdam, The Netherlands.Paxson, V. (1995), Flex, version 2.5, A fast scanner generator, The Regents of the University ofCalifornia. Available online athttp://www.math.utah.edu/docs/info/flex toc.html.Puget, J.-F. (1994), A C++ implementation of CLP, in `Proceedings of the Second Singapore Inter-national Conference on Intelligent Systems', Singapore.Schwartz, J. T., Dewar, R. B. K., Dubinsky, E. & Schonberg, E. (1986), Programming with Sets |An Introduction to SETL, Springer-Verlag, New York.Scott, D. S. & de Bakker, J. W. (1969), `A theory of programs'. Unpublished seminar notes, IBM,Vienna.Shoham, Y. (1994), Arti�cial Intelligence Techniques in Prolog, Morgan Kaufmann.Sterling, L. & Shapiro, E. (1994), The Art of Prolog, second edn, MIT Press.Sussman, G. J. & McDermott, D. V. (1972), `CONNIVER reference manual', AI Memo no. 259, MITProject MAC.Sussman, G. J., Winograd, T. & Charniak, E. (1970), `MICRO-PLANNER reference manual', AIMemo no. 203, MIT Project MAC.van Deursen, A., Heering, J. & Klint, P., eds (1996), Language Prototyping { an Algebraic Speci�cation

42 Approach, Vol. 5 of AMAST Series in Computing, World Scienti�c Publishing Co, Singapore.Voronkov, A. (1992), Logic programming with bounded quanti�ers, in A. Voronkov, ed., `Logic Pro-gramming and Automated Reasoning|Proc. 2nd Russian Conference on Logic Programming',LNCS 592, Springer-Verlag, Berlin, pp. 486{514.Wirth, N. (1985), Programming in Modula-2, third, corrected edn, Springer-Verlag, New York.Wirth, N. (1986), Algorithms and Data Structures, Prentice-Hall, Englewood Cli�s, New Jersey, USA.Wirth, N. (1996), Compiler Construction, Addison Wesley, Reading, Massachusetts.

