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Preface

The paradigm of imperative programmingiswell known; thefirst programming language most peoplelearn
is an imperative one, and imperative programming languages are often used for everyday programming.
Unfortunately, this causes many people to miss out on the advantages of logic programming, especially
were it concerns search algorithms.

In this report we explore the possibility of combining the paradigms of imperative and logic programming,
by implementing a compiler for an imperative language with the extensions proposed in [AS97]. These
extensions bring some of the advantages of logic programming to imperative programming by introducing
the notions of failure and backtracking, which have proven so successful in logic programming languages
like Prolog.

Part | givesaquick overview of the features of this new programming language called Alma-0, which was
based upon Modula-2 [Wir85], and describes the abstract machine used to implement Alma-0 (the Alma
Abstract Machine, abbreviated to AAA), which combines the features of abstract machines for imperative
languages with those of abstract machinesfor logical languages.

Part |1 describes the implementation of the Alma-0 compiler in detail, from lexical analysisto code gener-
ation and the run-time system. It not only describes the current implementation, but commentary sections
describe the problems encountered during the implementation and the motivations behind certain solutions.
These sections have been divided from the main text by large captions, and can be recognized by the little
“c" after the section number.

| would like to thank Krzysztof Apt for his support, and for the enlightening conversations I’ ve had with
him on many a rainy morning, and, if one of the mornings was not rainy, it should have been, just for the
effect. My fellow students should be thanked for their interesting remarks and discussions, whether they
concerned my project or not. Finally, | would especialy like to thank my parentsand Michelle for keeping
me going, and for telling me to get on with it.
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Chapter 1

The Alma-0 programming language

In this chapter we assume the reader is familiar with Modula-2, or a similar imperative programming lan-
guage, and describe the peculiar features of Alma-0; the extensions, the input/output procedures, the un-
supported Modula-2 features, and the small changes when compared to Modula-2. See appendix A for an
overview of the syntax of Alma-0 and appendix B for some examples of Alma-0 programs.

1.1 Extensions

The most interesting aspect of the Alma-0 programming language are the extensions it provides. The ex-
tensions are based on the extensions proposed in [AS97], and a short description of each is given in the
following sections:

1.1.1 TheBESextension (boolean expression as statement)
Alma-0 allows the programmer to use a boolean expression as a statement:

¢ If the expression evaluatesto TRUE, execution continues after the statement.
e |f the expression evaluatesto FAL SE, we say the statement fails, or afailure has occurred.

¢ If nofailure occurs during execution of a sequence of statements, we say the sequence of statements
succeeds, otherwise it fails.

Anexampleisthetest wast e < Tot al Val ue - Current Best online28 of knapsack. a0 (see
section B.1), which tests whether the current solution is better than the current best.

1.1.2 The SBE extension (statements as boolean expression)
Alma-0 allows the programmer to use a sequence of statements as a boolean expression:

o If the sequence of statements succeeds, the expression evaluatesto TRUE

¢ If the sequence of statementsfails, the expression evaluatesto FALSE

An exampleis the call to the procedure Squar es on line 49 of squar es. a0 (see section B.4), which
causes a solution to be printed, only when one was found.
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1.1.3 The OREL SE extension

The OREL SE statement
El THER s ORELSE t ORELSE u END;

startsby executings . If executionfails, either inthat branch or beyond the end of the OREL SE statement, all
assignments done since the beginning of the OREL SE statement are undone, and execution continues with
t . If execution fails again, all assignments are undone again, and execution continueswith u. If execution
fails thistime, no special action is performed by the OREL SE statement.

The mechanism by which execution can continue, is that of the choice point; when the OREL SE statement
isexecuted achoice point is created. When astatement fails, backtracking is performed, i.e. all assignment
done since the choice point are undone, and execution continues at the choice point.

An exampleisthe OREL SE statement on lines 21-29 of knapsack. a0 (see section B.1), which first adds
the object to the knapsack, and, should that fail, removes the object.

1.1.4 The SOME extension

The SOVE statement can be seen as an iterated OREL SE statement. The statement
SOME i := a TOb DO s END
is equivalent to:

e FALSE, whena > b.
e s,whena = b.

e EITHER i := a; s
ORELSE SOME i := a+l1 TO b DO s END;
whena < b.

An example is the SOVE statement on lines 28-33 of squar es. a0 (see section B.4), which causes all
squared to be tried on the current position.

1.15 TheCOMMIT extension

The COW T statement prevents superfluous backtracking from happening. The statement
COW T s END;

first executes s, and then deletes all choice points created during the execution of s.

1.1.6 The FORALL extension

The FORALL statement allows the programmer to explore all the possibilities of a sequence of statements.
The statement



FORALL s DOt END;

executess, and, aslong asthere are choicepointsleftin s, backtracking isperformedto thelast choice point.
The FORALL statement succeeds when there are no choice pointsleftin s, even when s failed. After each
successful completion of s, t isexecuted. Backtracking is not performed over the statementsin t , which
makes it possible to record the current state without losing it when backtracking occursin s.

An example is the FORALL statement on lines 25-27 of queens. a0 (see section B.3), which causes all
solutions to the queens problem to be found.

1.1.7 TheEQ extension

With every variableof basictype, Alma-0 associatesaflag, whichsignifieswhether thevariableisinitialized
or uninitialized. Initially, avariableis uninitialized, and only after a value has been assigned to it, does it
becomeinitialized. Actualy, thisflag is associated with every lvalue of a basic type, e.g. every element of
an array, provided the element is of abasic type.

A related concept is that of knownness; if all variablesin a expression are initialized, the expression has a
known value, and otherwise it has an unknown value.

When an uninitialized variable is used in an expression, arun-time error is generated. The only exception
to thisrule are the equality operator =, and the call-by-mixed-form parameter passing mechanism described
in the next section.

In Alma-0, the semantics of the operator = are different from those of the other relational operators. The
behavior of the comparisons = t dependsupons andt :
e If s andt areexpressionswith aknown value, aregular comparisonis performed.

e If sisanuninitialized variable, andt isan expression with aknown value, thevalueof t isassigned
tos.

e Ift isanuninitialized variable, and s is an expression with aknown value, the value of s isassigned
tot.

¢ All remaining cases generate a run-time error.

Anexampleistheteste = a[i] online8of present. a0 (see section B.2), which tests whether e is
an element of thearray a, or, if eisuninitialized, setse to every element of the array a, upon backtracking.

1.1.8 TheMIX extension
To alow for the use of a procedure parameter as an input parameter and as an output parameter, the call-
by-mixed-form parameter passing mechanism has been provided.

From the perspective of the procedure being called (the callee), call-by-mixed-formisidentical to call-by-
variable.

From the perspective of the code calling the procedure (the caller), call-by-mixed-form can behave as call-
by-variable or as call-by-value, depending upon the value being passed:
¢ When an Ivalueis passed, call-by-mixed-formisidentical to call-by-variable.

¢ When avalue is passed, which is not an Ivalue, call-by-mixed-formis similar to call-by-value; the
valueis stored in atemporary, invisible variable, and this temporary variable is passed to the proce-
dure. When the parameter is changed by the callee, only the temporary variable is changed.
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An exampleisthe M X declaration on line 5 of pr esent . a0 (see section B.2), which allows e to be an
Ivalue or aregular value.

1.1.9 The KNOWN extension

In order to determine, whether an Ivalue of abasic type has aknown value, the built in function KNOAN can
be used. The value of KNOWN( x) dependson x:

e If x isaninitialized Ivalue of abasic type, KNOAN( x) equals TRUE.

e If x isan uninitialized lvalue of abasic type, KNOAN( x) equals FALSE.

¢ Inall other cases, KNOAN( x) yieldsacompile-timeerror.
Note that this definition does not correspond precisely to the definition of knownness given above; the
knownness of a complicated expression like x+y cannot be tested. Instead the variablesin the expression

need to be tested separately, e.g. KNOAN( x) ; KNOWN( y) . See section 7.2.10 for the motivations behind
this discrepancy.

Anexampleisthe KNOANstatementsonlines12-13of squar es. a0 (seesection B.4), which testswhether
the current square has been placed yet.

1.2 Input and output
Alma-0 hasthree built in procedures which provide support for input and output operations:

¢ READreadsanumber of valuesfrom the standard input stream and assignsthem to the variablesgiven
as parameters. The number of values read equals the number of parameters, which should be more
than zero.

¢ \\RI TE writesthe values of its parametersto the standard output stream. There should be at |east one
parameter.

¢ Rl TELNissimilartoWRI TE, but WRI TEL Nappendsanewlinecharacter tothe output, and WRI TELN
can also be called with zero parameters.

Examples are the WRI TE and WWRI TELN statements on lines 64—69 of knapsack. a0 (see section B.1),
and the READ statement on line 22 of pr esent . a0 (see section B.2).

1.3 Missing features
Features that are present in Modula-2 but that are missing in Alma-0 include:

e TheCARDI NAL type, sets, variant partsin records, open array parameters, proceduretypes, and pointer
types.

e TheLOOP, EXI T, CASE, and W TH statements.
¢ Nested procedures.
e Modules, and therefore the EXPORT and | MPORT declarations.



1.4 Small differences

A number of small differences can be noticed when comparing Alma-0 to Modula-2:

¢ Floating point constants are required to have aleast one digit after the point; use 1. O instead of 1. .
e Theoperator REMis provided as an alternative to the MOD operator. It functionsidentically.
e Theinequality operator # can also be written as <>.

¢ The syntax of the REPEAT statement is different to allow for the use of a sequence of statement as
the boolean expression; use

REPEAT s UNTIL t END;
instead of
REPEAT s UNTIL t;

¢ Alma-0 allows procedures to return values of structured types (e.g. records and arrays) as well as
values of basic types.






Chapter 2

The Alma Abstract Architecture

The Alma Abstract Architecture (AAA) isthe virtual architecture used during the intermediate code gener-
ation phase of the Alma-0 compiler. Although the current implementation of the AAA entails trandating
the AAA instructionsinto C statements, the design of the AAA issuch, that it should be possibleto translate
them into machine code. To this end, the following design criteriawere formulated:

e |t should be easy for the compiler to select the correct AAA instructions (simple intermediate code
generation).

¢ |t should be easy to convert AAA instructionsinto C statement (simple C code generation).

e The AAA should resemble actual CPU architecturesto make it plausible that AAA instructions could

be trandlated into machine code (simple machine code generation).

Asthe Alma-0 languageitself, the AAA aimsto combinethe best of both worlds; elementswere taken from
virtual machines used to compile imperative languages (in particular the architecture described in [Wir96,
p.55]), and from avirtual machine used to compile alogical language (the WAM [AK91]).

Still, the AAA most resembles the virtual machines used in the compilation of imperative languages. The
additions made to provide for the extensions of the Alma-0 language are:

e Thefailure handling instructions ONFAI L, FAI L.

e Thelog control instructions CREATEL OG, REPLAYLOGand REW NDLOG.

¢ Theautomatic recording of old valuesin assignment instructions ADD, SUB, MJL, DI V, MOD, MOVE,

and CLEAR.
2.1 Data
211 Types

The AAA supportsthe following four data types:

byt e an 8-hit byte, corresponding to the Alma-0 type CHAR and the C typechar .

wor d the natural word size for the host computer, usually 4 bytes. This type should be large enough to
contain all values of the Alma-0 types| NTEGER, and large enough to hold a pointer.
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f | oat afloating point value, corresponding to the Alma-0 type REAL and the C typedoubl e.

st ri ng astring value, used for the WRI TE instruction.

Thestri ng typeisonly used by thei mmst ri ng addressing mode and the WRI TE instruction. It has
been provided to alow for efficient compilation of statementslike

VWRI TELN(" Hel 1 o worl d’);

Instead of convertingthe string’ Hel | o wor | d’ into an array of characters and generating a loop that
prints al the characters, a call to the C functionpri nt f () can be generated, with the entire string asits
parameter.

212 Registers

The AAA has eight registers of type wor d:

Z always contains the value zero.
S1 ascratch register for very temporary values.
S2 another scratch register.

LP thelog pointer register. It containsan opaque value used by the run-time system to handlelog adminis-
tration; one should only write valuesto it that have been read from it before, or let the CREATELOG,
REPLAYLQOG, and REW NDL OGinstructions handle this register.

BP thefailureframe pointer register containsapointer to the last failureframeallocated on the stack®. Fail-
ure frames are created by the OREL SE, SOVE, and FORALL statements, as well as when a sequence
of statements is used as a boolean expression. They hold the saved values of a number of registers
(depending upon the statement that created the frame), and the address of the failure handler (see sec-
tion 2.3).

EP the environment frame pointer register contains a pointer to the last procedure call stack frame (compa-
rable to the frame pointer found in actual CPU architectures). Environment frames are created when
aprocedureis caled, and hold the actual parameters, the saved values of a number of registers, the
return address, and the local variables.

SP the stack pointer pointsto the top of the stack and is always lower? than both BP and EP.

PC the program counter is avirtual register manipulated by the flow control instructions.

2.2 Instructions

Aninstruction is composed of one opcode and three operands. The opcode specifies the operation to per-
form, the operands specify the data on which to perform the operation.

1The abbreviation for this register is“BP” instead of “FP” for two reasons; the abbreviation “FP” is usually reserved for the frame
pointer, which is more like the AAA’s EP register, and “B” is the name of the register in the WAM, that provides a similar function.
2The AAA does not stray from the tradition of letting stacks grow backward
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2.2.1 Operands

An operand consists of an addressing mode, avalue, and, sometimes, the name of aregister. The addressing
mode specifies how the value and the register name should be interpreted:

e Thei mrbyt e addressing mode indicates that the operand represents a constant byt e value, e.g. 5
or’a .

e Thei nmnor d addressing mode indicates that the operand represents a constant wor d value, e.g.
70000.

e Thei nmf | oat addressing modeindicatesthat the operand representsaconstant f | oat value, e.g.
3.1415927.

e Thei nmst r i ng addressing mode indicates that the operand represents a constant st ri ng value,
eg.'hello world' .

e Ther egnval addressingmodeindicatesthat the operand representsaregister, possibly incremented
by awor d value, eg. S1,BP + 70 or 24.

e Thei ndbyt e addressingmodeindicatesthat the operandrepresentsabyt e value at thememory lo-
cationindicated by thevalueof aregister, possibly incrementedby awor d value, e.g. byt e[ EP+10] .

e Thei ndwor d addressing mode indicates that the operand represents awor d value at the memory
location indicated by the value of aregister, possibly incremented by awor d value.

e Thei ndf | oat addressing modeindicatesthat the operandrepresentsaf | oat valueat thememory
location indicated by the value of aregister, possibly incremented by awor d value.

e Thereisnoi ndst ri ng addressing mode.

2.2.2 Opcodes

The AAA hasatotal of 27 different operationsfor arithmetic, flow control, log control and I/O (seetable2.1).
There are some pointsto note:

¢ Of every instruction, which can assign anew valueto amemory location, i.e. ADD, SUB, MUL, DI V,
MOD, MOVE and CLEAR, thereis arecording version, aversion that first records the current value of
the target memory location in the log (see section 2.3).

e The branch instructions in the AAA combine the separate comparison and branch instructions nor-
mally found in actual CPU architectures. A statusregister is therefore not needed, and more efficient
C code can be generated.

e TheLAB ingtruction insertsalabel in the C code generated by the Alma-0 compiler. Itisthe C com-
piler’sresponsibility to calculate the correct address for the branch instruction, thereby relieving the
compiler of that task.

e Thel/O instructions were added to the architecture to support Alma-0’s built in READ, WRI TE and
WRI TELN procedures. The I/O instructions are directly translated into callsto C st di o functions.
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Instruction | Pseudo-code

Arithmetic

ADD a, b, ¢ a:=b+c;

SUB a, b, ¢ a:=b- c

MU a, b, ¢ a:=b*c

DV a, b, c a:=b/ c

MDD a, b, c a:=b %c;

CHK a, b, c IF a <b ORa > c THENgeneratearun-timeerror ;
MOVE dst, src, len copy | en bytesfrommeni src] tonenf dst ]
CLEAR dst, _, len set| en bytesat nenf dst] to zero

Comparison & flow control

BEQ a, b, | IF a =b THEN GOTO | ;

BNE a, b, | IF a <>b THEN GOTO | ;

BLT a, b, | IF a < b THEN GOTO | ;

BCGE a, b, | IF a > b THEN GOTO | ;

BGT a, b, | IF a>b THEN GOTO | ;

BLE a, b, | IF a > b THEN GOTO | ;

BRA _, _, | GOo10 |

JSR _, _, | meni{ EP] := PC, GOTO I|;

RTS ., ., _ GOTO neni EP] ;

ONFAIL ., _, | men{BP] :=1;

FAIL _, _ GOTO nen{ BP] ;

LAB ., _, | insert label | in output code

NOP _, ., - do nothing

Log control

CREATELOG ., _, _ createanew log

REPLAYLOG ., ., - replay current log and discard it

REW NDLOG _, ol dl p, _ | discardlogswithout replaying, until LP equalsol dl p
110

READ a, _, _ read a value from the standard input stream and storeitin a
WRITE _, val, _ writevalueval to the standard output stream

WRI TELN _, _, _ write a newline character to the standard output stream

_indicates an operand that is not used and may therefore be of any addressing mode.

b and c can be of any addressing mode, excepti nmrst ri ng.

a can be of any addressing mode, except i st r i ng, and must be an Ivalue, which excludes the

addressing mode r egnval , when the offset does not equal O or the register is Z.

| isalabel and must be of addressing modei mmaor d.

src anddst are addresses and must be of addressing modei nmaor d.

| en isalength parameter and must be of addressing modei nmaor d.

ol dl p isan opague LP value and must of addressing modei mmaor d or i ndwor d.

val can be of any addressing mode.

Table 2.1: AAA instruction set
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2.3 Backtracking

2.3.1 Choice points, failure handling, and log creation

An important difference, one notices, when comparing the AAA to the WAM, is the division of the choice
point notion into the separate notions of failure handling and log creation which, when taken together, can
be used to implement a choice point.

When afailure handler isinstalled by the ONFAI L instruction, the location at which execution should con-
tinue in case of afailure, is saved. When a failure is subsequently generated by the FAI L instruction, ex-
ecution continues at the previously saved location. Compare the failure handling notion to the exception
handling mechanism in languages such as C++ [ES90] and Java[GJS96]. It isusedin the Alma-0 compiler
to implement the BES and SBE extensions.

When alog is created by the CREATEL OGinstruction, from that point on, every value that is about to be
changedisrecordedin thelog, but only when therecordingversion of aninstructionisused. Whenthelogis
played back by the REPLAYL OGinstruction, the recorded values are restored. Thelog can be compared to
thetrail described in[AK91], and isused in the AlIma-0 compiler to implement the OR, SOME, FORALL
and COMMIT extensions.

A choice point that offers a choice between two execution branches, can be created by creating a new log,
setting a failure handler, and executing the first branch. When a failure occurs, the failure handler will be
called, which should replay the log and execute the second branch.

232 Thelog

More than one log may have been created at one time, but only one log is the active log. When avalueis
recorded, it is recorded in the active log, if thereis one. The log administration system behaves asfollows:

¢ At the beginning of the execution of an Alma-0 program there is no (active) log.

e When alog is created by the CREATELOG instruction, then the currently active log is deactivated,
and the new log becomes the active log.

¢ When the recording version of an instruction is executed, the current value of the target is saved in
the active log, if any, before the assignment is performed.

¢ When alog isreplayed by the REPLAYL OGinstruction, the values which have been recorded in the
log arerestored, and thelog previously deactivated is made active again (if therewas no previouslog,
thereis no longer an activelog). Finaly, thelog just replayed is discarded.

¢ When the REW NDLOG instruction is executed, the active log is discarded and the previouslog is
activated, until the log indicated by the second operand is active. The valuesin the discarded logsare
not restored.

As we can see, the logs behave mostly like a stack of logs. However, the FORALL statement breaks the
analogy; when execution of the DO part starts, the active log is remembered, and the log, which was active
before the FORALL statement, is activated. When execution of the DO part is finished, the log that was
remembered is activated again, and any logs created during execution of the DO part are discarded.
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Chapter 3

Overview of the implementation

The Alma-0 compiler waswrittenin ANS| C [KR88]. The actual devel opment was doneon an Apple Mac-
intosh computer with the Metrowerks CodeWarrior development environment, but the compiler has been
built successfully with the gcc C compiler on Digital Unix, FreeBSD, Irix, Linux, and Solaris platforms.
The Flex [Pax95] and Bison [DS95] tools were used to generate the scanner and parser.

3.1 Compiler structure

It is useful to divide the compilation processinto phases. It makesit easier to think about the compilation
processasawhole, it gives usaconvenient way to dividethe compiler into separate, though interdependent,
modules, and it provides us with an order for the chapters of this part.

Asdescribedin[ASU86, Chapter 1], we can distinguish thelexical analysis, syntax analysis, semantic anal-
ysis, intermediate code generation, code optimization, and code generation phases of the compiler. Apart
from the optimization phase, all these phases are present in the Alma-0 compiler and are described in the
next sections, as are the various utility functionsthat are used throughout the compiler.

3.1.1 Lexical analysis

During the lexical analysis phase, the lexical analyzer divides the source file (also referred to as the input
stream) into small chunks of data, called tokens or terminals. This processis also called tokenizing. The
lexical rulestell the lexical analyzer which characters make up the tokens, e.g. the charactersWHI LE make
up akeyword, the characters3. 1415927 make up afloating point number, etc. Thelexical analysisphase
transforms the input stream from a stream of charactersinto a stream of tokens, which is passed on to the
next phase.

Thelexical analyzer in the Alma-0 compiler was implemented using Flex [Pax95], the GNU version of the
well known lexical analyzer generationtool Lex [Les75]. ThefileaOgr am | containsthe regular expres-
sions that are equivalent to the lexical rules. When Flex is run, it reads the file aOgr am | , generates a
lexical analyzer that behaves according to the specified regular expressions, and writes it to the C source
filel ex.yy. c.

17



3.1.2 Syntax analysis

During the syntax analysis phase, the stream of tokens generated by the lexical analyzer, are used by the
parser to form larger constructs, called non-terminals. These constructs are hierarchical, i.e. one construct
can contain several others, and the top-level construct is the complete sourcefile, the compilation unit. The
syntax tells the parser how to form these constructs from tokens and other constructs, e.g. an addition is
formed by an expression, followed by a+ token and another expression.

Theparser inthe Alma-0 compiler wasimplemented using Bison, the GNU version of thewell known parser
generation tool Yacc [Joh78]. ThefileaOgr am y contains the context-free syntax rules that make up the
syntax. When Bisonisrun, it readsthefileaOgr am y, generatesa LALR, bottom-up, parser that behaves
according to the specified syntax, and writes it to the C sourcefiley. t ab. c.

3.1.3 Semantic analysis

During the semantic analysis phase, the constructs found by the parser are examined and their validity is
checked. Mostly this entails type analysis, but it is also in this phase that constant folding and variable
allocation takes place.

During type analysis every variable, value and expression is tagged with itstype, and every use of each of
theseischecked against thetyping rulesof thelanguage. For example, itisforbiddento assignan| NTEGER
value to a BOOLEAN variable, because the types are not compatible.

Constant folding is the process whereby expressions, which can be evaluated at compile-time are in fact
evaluated. For example, the compiler can see that the expression 30+2* 5 will always have the value 40,
and it can subgtitute that valuefor the expression. Not only doesthismakethe resulting program run quicker,
but there are some places where constant folding is absolutely necessary; the dimensions of an array need
to be known at compile-time, although they may be given as complicated expressions.

For every variable, amemory location must be allocated, which containsthe variable. Thevariablealloca-
tion process must decide whether a variable should be stored in global memory (if it'sa global variable) or
on the stack (if it'salocal variable), and it must take care not to allocate one memory location to more than
onevariable.

In the Alma-0 compiler, type checking is implemented in the C sourcefiles a0t ype. ¢ and aOt ype. h,
whileconstant folding and variableallocation areimplementedinthe C sourcefileaOval ue. c andaOval ue. h

3.1.4 Intermediate code generation

During the intermediate code generation phase, the constructsfound in the syntax analysis phase are trans-
lated into sequences of AAA instructions, with help from the information gathered in the semantic analysis
phase. The hierarchical structure of the syntax is used here; when an addition istrandated, the instructions
generated for the subexpressions are used to calculate the operands for the addition, and then an addition
instruction is generated to perform the actual addition.

Inthe AlIma-0 compiler, intermediate codegenerationishandled by the C sourcefilesaOcode. c,a0code. h,
aOcode_f| ow. ¢, and aOcode_ops. c.

3.1.5 Codegeneration

The AAA ingtructions generated in the previous phase can’'t be executed directly by a CPU. Therefore,
during the code generation phase of the compiler, the AAA instructions are trandated into a C program

(a. out . c), which can be compiled with any ANSI C compiler.
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Most compilers emit machine language instructions in the code generation phase, and, while this makes
the resulting program as efficient as possible, it does bind the compiler to a specific platform. Because the
Alma-0 compiler was developed on a Macintosh platform, but was designed to run on Unix platforms as
well, C was chosen as the “machine language” .

In the Alma-0 compiler, code generation and the implementation of the AAA, are handled by the C source
filesa0aaa. c,a0aaa. h,andaOaaar unt i ne. h. ThefileaOcpr ef i x. t xt providesatemplatefor
the output file a. out . ¢, and contains functions that implement the AAA run-time system, e.g. the log
administration system.

3.1.6 Thesymbol table and other utility functions

Variables, constants, types, and procedures defined in the source file should be remembered for later refer-
ence. The symbol table takes care of this; avariable can be stored in the symbol table and later on it can be
retrieved from the symbol table by searching for itsname. The symbol tableisused in the semantic analysis
phase, as well as in the intermediate code generation phase. There are a number of other utility functions
used throughout the compiler, which deal with memory management, string handling and error handling.

The symbol table isimplemented by the C source filesaOsynbol . ¢ and aOsynbol . h. Memory man-
agement is handled by the C sourcefilesaOnem ¢ andaOnem h. Stringsare handled by the C sourcefiles
alstring. candaOst ri ng. h, and errorshandling isimplemented by the C sourcefilesaOer r or . ¢
andaOerror. h.

3.1.7 Syntax-directed translation

While the decomposition into phases provides us with a helpful framework, it may seem as if the phases
are executed in a serial fashion. Thisis not true. In fact the phases are intermingled; afew lines are read
from the source file, some tokens are recognized, and, when a non-terminal is discovered by the parser,
semantic analysisisimmediately performed, and, when possible, intermediate codeisgenerated. Only code
generation is performed after all the other phases have been executed.

The context-freerules used to specify the syntax, associate with every non-terminal an action to be executed
when it isrecognized. These actions call the functionsthat handle semantic analysis and intermediate code
generation. This processis called syntax directed trandlation (see [ASU86, chapter 5]).

3.2 Putting it together

3.21 Building the compiler

To compile an Alma-0 program, the Alma-0 compiler needs to be built first. Of course this only has to
happen once, and is done as follows (see figure 3.1):

1. FlexisruntoreadthefileaOgr am | and generatethe C sourcefilel ex. yy. ¢, which containsthe
C implementation of the lexical analyzer.

2. Bisonisrunto read the context-free syntax fileaOgr am y and generatethe C sourcefiley. t ab. c,
which containsthe C implementation of the parser. Bison alsowritesaverboselogintothefiley. out put .

3. The C compiler (CodeWarrior or gcc) isrun to read the C source files and generate the Alma-0 com-
piler executableaOc. The C sourcefiles generated by Flex and Bison, aswell asthose written by the
compiler implementor (from aOaaa. c toaOval ue. c) areread.
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lex. yr.c y.tab. c alaaa . c alralue. o

alc

Figure 3.1: Building the AlIma-0 compiler

On Unix systems, amakefile (Makef i | e) handles these steps, while on Macintosh systems they are han-
dlied by amakefile (Makef i | e. mac) and a CodeWarrior project file (a0c. p).

3.2.2 Compiling a program

When the Alma-0 compiler aOc has been built, an executable can be built from an
Alma-0 sourcefile as follows (see figure 3.2):

queens.al

1. The Alma-0 compiler aOc is run to read the Alma-0 source file (e.g.
gueens. a0), and generatethe Cfilea. out . ¢, which containsthe C code
generated from the Alma-0 program and a copy of the AAA run-time system. alc

2. The C compiler is run to read the C sourcefilea. out . ¢, and generate the
executable (e.g. a. out ). The executable is stand-alone, i.e. it can be run
independently from the Alma-0 system. a. ouk. o

3. a. out isrunto execute the Alma-0 program, e.g. the queens problem.

On Unix systems steps 1 and 2 are automatically handled by the al nmac script,
whichisinstalled by running the | NSTALL script.

JUueens . eXe

Figure 3.2: Compil-
ing an Alma-0 pro-
gram
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Chapter 4

L exical and syntax analysis

The syntax of the Alma-0’s programming language (see appendix A) was derived from the syntax of Modula-
2 asdescribed in appendix B of [Wir85], hereafter referred to as the original Modula-2 grammar. Changes
were made to allow for the extensions, missing features, and other small changes.

4.1 Lexical analysis

Thelexical rules of AlIma-0 have been derived from rules 1 to 10 of the original Modula-2 grammar. Only
afew changes were made:
¢ Octal and hexadecimal constants are not recognized.

e The regular expression, which recognizes floating point constants, was changed to require the dot
to be followed by at least one digit. This prevents ambiguities in the case of ranges, e.g. before
the change[ 1. . 5] was tokenized as a REAL, followed by a dot and an | NTECER, instead of an
| NTEGER followed by a double-dot and an | NTEGER.

e Tokensfor new keywords were added, and tokens for unsupported keywords were removed.

e Thetoken <> was provided as an alternative to #.

4.2 Syntax analysis

The syntax of Alma-0 has been derived from rules 11 to 91 of the original Modula-2 grammar. To accom-
modate the BES and SBE extensions, the distinction between expressions and statements was made less
gtrict:

¢ Atnearly all locationsin the original Modula-2 grammar where the non-terminal expr essi on was
used on the right hand side of arule, the non-terminal st at ement was put instead.

¢ All statement types but the assignment and the RETURN statement, were moved from the right hand
sideof thest at errent rule(rule25 of thesyntax in appendix A) to theright hand side of thef act or
rule.

e expressi on was added to theright hand side of therulefor st at enment .
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Commentary

4.3c Thedesignator/qualident par se conflict

One of thefirst problemsto surface when implementing the parser, was aparse conflict in the original gram-
mar; Thequal i dent and desi gnat or rules (rules 12 and 14) cause “a. b” to be parsable either as a
qgual i dent or adesi gnat or.

It seemed impossible to change the grammar to solve this problem. Removing the second alternative from
thedesi gnat or rule (rule 14) solvesthe parse conflict, but makes“a[ 5] . b” unparsable. Likewise, re-
moving thesecond alternativefromthequal i dent rule(rule12) causes“a. b” tobeparsedasadesi gnat or,
evenwhereaqual i dent is expected.

Fortunately Bison handles parse conflicts like this one, known as shift/reduce conflicts (see [ASU86, pp.
213-215]), deterministically; it alwaysprefersshifting to reducing, whichin this case meansthat the correct,
second alternativeis chosen. To shut off the warning messagesthat Bison emits when ashift/reduce conflict
occurs, the ¥expect command was used.

4.4c Parsing an expression as a statement and vice versa

When the grammar was first adapted to allow for the BES and the SBE extensions, the approach taken was
simple. expr essi on was added to the right hand side of the st at enent rule and all occurrences of
expr essi on on theright hand side of grammar rules, were changed to st at enrent Li st .

4.41c Theassignment ambiguity

Unfortunately thiscaused aparse conflict concerning assignments: thecodefragmenta : = TRUE; FALSE
could now be parsed either as

assignment

desi g|nator 1= W

qua| ident statermnt ; State[nent
a fajtor facltor
TRUE FALSE
or as
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assignment ; state[nent
designator = fajtor fajtor
qualident TRUE FALSE
l

We opted for the second interpretation, therefore the syntax rules were changed so that the source of an
assignment should be an expr essi on instead of ast at enent Li st .

4.4.2c The parentheses problem

After awhile we discovered that the new syntax rules made parentheses mandatory where they should not
be. For example, we had to write

IF NOT ( FORi :=1 TOn DO... END) THEN ... END
where we wanted to write
IF NOT FORi :=1 TOn DO... END THEN ... END

Thiswas caused by thef act or rule (rule 32), which specified that the operand for the NOT operator must
beafact or andthat ast at ement Li st between parentheseswas af act or :

factor . NOT factor
| "(' statenentList ')’

The only way to make ast at ement intoaf act or wasto put parentheses around it. The first solution
to this problem we tried was adding the following rule to the syntax:

factor . statenent

but this caused a parse conflict concerning assignments similar to the one described above. So, instead the
right hand sides of the st at enent rule that described flow control statements, were moved to the right
hand side of thef act or rule, e.g.

factor : WHI LE statenentLi st DO statenentList END

Now every flow control statement could be used directly asf act or and no parse conflicts would arise.
This syntax was the definitive syntax.
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Chapter 5

Symbols and symbol tables

During compilation, the compiler needsto keep track of all kindsof named (e.g. types, variables, etc.), and
unnamed (e.g. literal values, instruction sequences, temporaries, etc.) datastructures. Thesedatastructures
are called symbols, and the named symbols are stored in the symbol table for retrieval by name.

This chapter describes the different kinds of symbols, the way symbols are represented, and the symbol
table.

5.1 Different kinds of symbols

Although there are a number of different kinds of symbols, al of them have at least the following features
in common:

e asymbol name, which is empty for unnamed symbols.

e avariable, which specified the kind of symbol it is, called the kind identifier.

¢ alink to the next symbol in the symbol table.
The symbol name and the kind identifiers are orthogonal, i.e. there are named as well as unnamed type
symbols, named aswell as unnamed variable symbols, etc. Sometimes, two different, but similar, language
featuresare represented by onekind identifier, with the difference being the presence, or absence, of aname.

For example, constants and literal values are both considered values; the first a named value, the second an
unnamed value.

We can distinguish type symbols, value symbols, code symbols, procedure symbols, and sameas symbols.
The next sections described these symbols and their specific features.

5.1.1 Thetypesymbol
The type symbol represent an Alma-0 type. We can define the following groups of types:

e Thebuiltintypesare BOOLEAN, CHAR, | NTEGER, and REAL, aswell asanumber of internal types.

e The basic types are the built in types, enumeration types, and range types, as well as the reference
types used internally.
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¢ Thenon-basic types are the types that are not basic types, i.e. record types and array types.

Like symbols, there are different kinds of types, with different specific features. A type kind identifier dis-
tinguished between the following kinds:

Built in types BOOLEAN, CHAR, | NTECGER, and REAL. There are AAA instructions to handle values of
these types directly.

Enumeration types The specific featureisalist of the constants of the enumeration type.

Rangetypes The specific featuresare the upper and lower bound, aswell asthe basetype of therangetype.

Record types The specific featureis list of the fields of the record type.

Array types The specific features are the key and value types of the array type.

Referencetypes Theseareusedinternally torepresent pointers. The specific featureisthetype of thevalue
pointed to, which may not be another referencetype.

5.1.2 Thevalue symbol
The value symbol represents the following objects:

Literal values Integer and floating point numbers, as well as character and string values, without a name.
Constants Literal valuesthat have been given a name by a CONST declaration.
Variables A memory location declared and given a name by a VAR declaration.

Temporaries A memory location used to hold atemporary value, e.g. the result of an addition, the return
value of a procedure. Temporaries are the unnamed counterpart to variables.

Specific features for the value symbols are the type of the value, and an AAA operand that represents the
actual value. The different objects represented by the value symbol can be distinguished by the absence or
presence of aname, by the type, and by the operand.

5.1.3 The code symbol

The code symbol, which is aways unnamed, represents a sequence of instructions, also called code. The
first code generated, e.g. code for an addition, represent short sequences, but as constructs higher in the
hierarchy aretrandated, e.g. aVWHI LE statement, the sequences get longer and longer. Eventually one code
symbol represent the entire trandlation of the body of a procedure, or of the main code. We can define the
following kinds of code, depending upon their result:

Void code Code that has no result, e.g. aflow control statement, or a call to a procedure that returns no
value.

Computational code Code that has aresult, e.g. an addition, or a call to a procedure that returns a value.
A value symbol represents the result.

Conditional code Codethat evaluatesaboolean expression, e.g. an AND operation, or acall to the KNOAN
procedure. When the boolean expression evaluates the TRUE, execution continues after the code.
When the boolean expression evaluates to FAL SE, execution continues at location indicated by the
false continuation label®.

1A label is an identifier, which is used to indicate the target of abranch or jump instruction. A LAB instruction, with the label as
its only operand, isinserted into the instruction sequence at the location where the jump should be made to.
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The specific features of the code symbol are:

¢ A pointer to the sequence of AAA instructions.

¢ A pointer to the value that represents the result, when the code is computational. Special valuesin-
dicate void code and conditional code.

e Thefase continuation label, when the code is conditional.

A sequenceof AAA instructionsisrepresented by asingly linked list of instructionrecords. Eachinstruction
record contains an opcode, three operands, and a pointer to the next instruction in the list.

5.1.4 The procedure symbol

The proceduresymbol, sometimesabbreviated to proc symbol, representsan Alma-0 procedure. Itisalways
named, and has the following specific features:

A list of formal parameters.

A return type.

An value symbol, which represents the return value.

A pointer to a code symbol, which representsthe AAA instructions generated for the procedure body.

A label that is placed at the start of the procedure body, the start label.

A label that is placed at the end of the procedure body, the end label.

5.1.5 The sameassymbol

The sameas symbol represents a symbol that isidentical to another symbol. A symbol can have only one
name, therefore when two identifiers refer to the same symbol, a sameas symbol is created; one identifier
refers directly to the symbol, the other identifier refers to the sameas symbol, which contains a pointer to
the original symbol. When a pointer to a sameas symbol is encountered, it isimmediately substituted for a
pointer to the original symbol. All thisis handled automatically by the symbol table handling functions.

5.2 Symbol representation

Because the different kinds of symbols have common, as well as specific features, they lends themselves
well to an object-oriented design. However, the C language does not provide the programmer with any
toolsfor object-oriented programming, so that the eventual design can only be described as pseudo object-
oriented (see section 5.4 for adescription of the problemsencountered beforefinally settling for thisdesign).
The following C types represent symbols:

typedef struct synmbol {
struct synbol *next _symnbol ;
enum synbol _kind {
kind_type = 1,
ki nd_val ue,
ki nd_code,
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ki nd_pr oc,
ki nd_saneas
} ki nd;
char *nane;
} synbol _t;

typedef struct type {
synbol _t sym
data specific for a type ...
} type_t;

typedef struct val ue {
synbol _t sym
data specific for a value ...
} value_t;

idemdito for code, procedure and saneas ...

Theauxiliary functionsynbol t *synbol _-newm enum synbol ki nd ki nd) allocatesanew sym-
bol of the right kind, and of the right size. When requesting avalue, synbol _-new() does somethinglike
this:

synbol _t *newsym = (value_t *) mall oc(sizeof(value_ t));
newsym >next _synbol = NULL;

newsym >ki nd = ki nd_val ue;

newsym >name = NULL;

return newsym

When asymbol of an unknownkind isencountered, thekind can easily be determined by checkingtheki nd
field:

i f(sym >kind == kind_val ue) {
val ue_t *val = (value_t *) sym
val points to a value ...

5.3 Thesymbol table

When a named symbol is created, e.g. when avariable is declared, it is added to the current symbol table.
One symbol table can hold all kinds of symbols, athough the code symbols, which are always unnamed,
are never added to asymbol table, and proceduresare never added to aloca symbol table, because Alma-0
does not support nested procedures.

A symbol table is represented by a singly linked list. New symbols are added to the front of the list that
representsthe current symbol table. Normally the global symbol table, which containsall global symbols, is
the current symbol table, but during compilation of aprocedure, itslocal symbol tableisthe current symbol
table.

When a symbol is looked up, the local symbol table, if present, is traversed first. If the symbol was not
found there, the global symbol table is traversed too. If the symbol is neither found there, a “symbol not
found” error is generated. If a symbol has been found, the kind identifier can be checked to determine the
kind of the symbol.
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Commentary

5.4c Implementing the object-oriented design in C

The symbol management system lends itself well to an object oriented design; thereis an is-a relationship
between symbols and the different kinds of symbols, e.g. atype symbol is a symbol. Unfortunately the
C programming language does not provide for a way to express this relationship in a natural way, unlike
languageslike C++ [ES90] and Java[GJS96]. A way had to be found to implement this design nonethel ess.

5.4.1c First approach

First onetypewasdeclared, ast r uct (called! obj _t, short for ”language object type”) which contained
aunion for the specific info for each kind, and afield to distinguish between the different kinds:

struct value_info {
data specific for a value ...

b

struct type_ info {
data specific for a type ...

b
typedef struct lobj {
enum {
ki nd_val ue = 1,
ki nd_t ype,
} ki nd;
uni on {

struct value_info vi;
struct type_info ti;

} .
} lobj_t;

Notethatthel obj _t structurehad nonane field. Instead, the symbol table contained alist of (name,pointer)
pairs that associated a name with a pointer to al obj _t structure. When two names referred to the same
thing the corresponding symbol table entries pointed to the same | obj _t . The sameas symbol was not
necessary using this approach.

This design had the advantage that no type casting was necessary to use al obj _t as a specific kind of
symbol, but this also meant that the C compiler’s type checking mechanism was bypassed completely, and
that a function had to check the kind identifier, to be sure it was passed a symbol of the correct kind. The
absence of a name field also made debugging harder.
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5.4.2c Second approach

Becausel obj _t swere used extensively throughout the compiler, the bypassing of the type checking mech-
anism led to an increase in the number of unnoticed programming errors. A new symbol system was de-
signed inwhichthel obj .t struct kept pointersto the kind-specific data instead of the data itself:

struct value_t {
data specific for a value ...

b

struct type t {
data specific for a value ...

}
typedef struct |obj {
enum {
kind_value = 1,
ki nd_t ype,
} ki nd;
uni on {
struct val ue_t *Vi;
struct type_t *ti,
} u;
} lobj _t;

This design allowed functions to specify, in their prototype, what kind of symbol they expected, instead
of having to check the kind identifier explicitly, thereby allowing the compiler to find programming errors
earlier on. However, more memory was now alocated for each symbol; onel obj .t struct andaC
st ruct containing kind-specific data. Furthermore, there was still no namefield.

5.4.3c Third and final approach

While this second approach proved quite successful (and indeed lasted for quite some time before being re-
placed), the disadvantagesfinally led to the design described in section 5.2. Thel obj _t typewasrenamed
tosynbol _t, thegeneric dataand the kind-specific datawere mergedintooneC st r uct and anamefield
was added.

Adding anane did introduce two new problems; what should happen when two identifiersrefer to the same
symbol, and, how should unnamed symbols be handled? Unnamed symbols are handled simply by setting
their name field to NULL, and the case of two identifiers referring to the same symbol is handled by the
sameas symbol.
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Chapter 6

Semantic analysis

Semantic analysisactually compromisesalot of different activities, a.o. typeanalysis, constant folding, and
variable allocation, all of which are described in this chapter.

6.1 Typeanalysis

As has been described in chapter 3, type analysis concernsitself with checking if the program being com-
piled contains no typing errors.

6.1.1 Type compatibility

The primary notion hereis that of type compatibility’, also called type equivalence. In Alma-0 two typess
andt are compatible, when at least one of the following is true:

e S=t

e s isarangewith basetypet

e t isarangewith basetypes

e s andt areboth rangeswith the same base type

Thiskind of type equivalenceis called name equivalence [ASU86, pp. 352—-359]. Thetypesof expressions
are checked in the following cases:

¢ Binary operations may only be performed on two values of compatibletypes, e.g. a REAL value can
be added to a REAL value, but not to an | NTEGER value. Assignment can be seen as a binary oper-
ation in this respect, i.e. only avalue of a compatibletype may be assigned to a variable of acertain

type.
e Someoperationsmay not beperformedonall types, e.g. thebinary minusmay beappliedtoal NTEGER
value, but not to a BOOLEAN value.

¢ Only avalueof acompatibletype may be used asthe actual parameter for aprocedure’scall-by-value
parameter. This also applies to a call-by-mixed-form parameter, when it behaves as a call-by-value
parameter.

1AIma-0 doesn’t know the separate notion of assignment compatibility because there is no CARDI NAL type
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e Only a value of an identical type may be used as the actual parameter for a procedure’s call-by-
variable parameter. This also applies to a call-by-mixed-form parameter, when it behaves as a call-
by-variable parameter.

6.1.2 Typerepresentation
Type symbols are represented by the following C types:

struct enum.info {
struct string list_elt *vals;

i
struct range_info {
type_t *baset ype;
val ue_t *from *to;
i

struct record_field {
struct record field *next;

char *narme;
aaaword_t of f set;
type_t *type;

b

struct record_info {
struct record field *fields;

i
struct array_info {
type_t *key type, *val _type;
b
struct reference_info {
type_t *ref type;
1
struct type {
synbol _t sym
enum {
kind builtin = 1,
ki nd_enum

ki nd_r ange,

ki nd_record,

ki nd_array,

ki nd_ref erence

} ki nd;

aaaword_t si ze;

uni on {
struct enum.info enumer ati on;
struct range_info range;
struct record_info record;
struct array_info array;

struct reference_info ref erence;
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} u;
} type_t;

e Theki nd field identifiesthe kind of type.
e Thesi ze field containsthe total size in bytes of the type.

e Theu field isaunion of records, containing data specific for a certain kind of type.

Only onet ype_t structureisallocated for each type, and the base type of arange, is available through the
baset ype field, making it easy to determine type compatibility.

6.1.3 Typecoercion

Although a function could be made to determine type compatibility, a different approach was taken. In-
stead of calling this hypothetical functionto check if two typesare compatible, acall ismade to thefunction
code_coer ce(), and afterwards acheck is made to see if the types are identical. If the types were com-
patible, but not identical, thefunctioncode _coer ce() would have coerced the type of onevalueinto the
type of the other, thereby making them identical.

Coercion is the implicit conversion, by the compiler, of avalue of one type, into a value of another type.
Usually the new value conveys the same information as the old value, e.g. in alot of programming lan-
guages, but not Alma-0, integer values are automatically coerced into floating point values, although the
reverse conversion is usually not performed automatically, because information would be | ost.

Thefunctioncode_coer ce() takestwo arguments, thefirst apointer to acode symbol pointer, the second
a pointer to the type requested, and coerces the result of the code into the requested type, if possible. The
function code_coer ce() does not coerce values, but before a value symbol is used in an expression,
where coercion could apply, it is converted into a computational code symbol, whose result is the original
value. Thereforethe function code _coer ce() can aso handle these cases.

The following code fragment is an example of how type compatibility could be checked:

code_coerce(&code_to _check, type_ to _check against);

i f(code_to_check->result->type == type_to_check_against) {
types are conpatible ...

} else {
types are not conpatible ...

}

The coercions performed, when needed, by the function code_coer ce() , are:

¢ Avaueof atypethat iscompatiblewith, but not identical to, another type can be coerced into avalue
of that type.

A reference to avalue of atype that is compatible with, but not identical to, another type can be co-
erced into areferenceto a value of that type.

A reference to a value of abasic type can be coerced into the value referenced (the value is derefer-
enced).

Computational code that returns a boolean value, can be coerced into conditional code.

Conditional code can be coerced into computational code that returns a boolean value.
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¢ Conditional code can be coerced into void code. This coercion implementsthe BES extension.
¢ Void code can be coerced into condition code. This coercion implementsthe SBE extension.

¢ A constant of type STRI NG can be coerced into an array of type CHAR, provided the array is large
enough to hold the complete string.

6.2 Values

In the Alma-0 compiler thereis a single abstraction, the value, to represent literal values, constants, vari-
ables, and temporaries. The following section describe valuesin general, as well as the details of the dif-
ferent kinds of values.

6.2.1 Valuerepresentation

Values are represented by the following C type:

typedef struct val ue {
synbol _t sym

type_t *type;
operand_t oper;
} value_t;

e Thet ype field isapointer to the type of the value represented by the oper field.

e Theoper field representstheactual valueasan AAA operand (see section 8.1.1 for the representation
of AAA operands).

Thename, t ype, and oper fields determine the kind of value we' re dealing with:

e When the type is | NTEGER and the addressing mode of the operand is i mmwor d, the val ue_t
represents an immutable | NTEGER value, i.e. aliteral value or a constant. If the value is named,
it isaconstant, otherwiseitisaliteral value.

¢ When the typeis reference-to-1 NTEGER and the addressing mode of the operand isr egnval , the
val ue_t representsthe address of an | NTEGER value in memory, i.e. an lvalue. If the valueis
named, it isavariable, otherwiseit is afield of arecord, or an element of an array.

e When the type is | NTEGER and the addressing mode of the operand is i ndwor d, the val ue_t
representsan | NTEGER value in memory, e.g. adereferenced lvalue or atemporary.

Note the difference between the last two val ue_t s; one represents the address of an Ivalue, the other the
valueitself. An address of avariable can be coerced into the value by dereferencing the value.

Only references to basic types can be dereferenced, because indirect addressing modes only exists for the
basic types. Referencesto variables of non-basic types (arrays and records) are not dereferenced; only its
elementsare (providedthey areof abasictype), after thereferenceshave been used to cal cul ate the addresses
of the elements.



6.2.2 Constant folding

The Alma-0 compiler performs constant folding when possible. Constant folding isthe processof replacing
expressions, which can beevaluated at compile-time, by their result. For example, theexpression®30+2* 4”
can be replaced by the expression “38”, thereby generating code that runs quicker.

Apart from being useful by optimizing the generated code, constant folding is al so necessary at some points
in the Alma-0 language; the dimensions of an array should be known at compile-time, which means that
the expressionsin a declaration like

VAR
info: ARRAY [ M NVAL-1 .. MAXVAL*2] OF | NTECER

should be evaluated at compile-time. It turns out that mandatory constant folding only appliesto arithmeti-
cal operators, and not to logical or comparison operators. Therefore the Alma-0 compiler only performs
constant folding where it concerns arithmetical operators, but the concept could easily be extended to also
include the logical and comparison operators.

Earlier versions of the Alma-0 compiler also performed constant folding where it concerned address cal cu-
lations. For example, the addressof i nf o[ M NVAL] can be determined at compile-time. However, these
optimizations were removed, because they made the implementation more complex, which would compli-
cate further development on the compiler by someone else.

6.2.3 Variableallocation

When a variable is declared, memory is allocated for it. If the variable is a global variable, the memory
is allocated in main memory, otherwise it is allocated on the stack. The allocation strategy used is quite
simple; a pointer keeps track of the amount of memory allocated aready, and is incremented each time a
variable (or temporary) isalocated. No attempt ismadeto interleave variables. At theend, thispointer tells
the compiler how much main memory, or stack memory, to reserve for global, or local, variables.

Registers are not used to hold variables, as it would require the log administration functions to specifically
remember if avariable was stored in memory or in aregister. Thiswould increase the overhead of the log
administration system.

The EQ and KNOWN extensionsrequire the run-time system to keep track of whether avariableisinitial-
ized or uninitialized. To thisend, with every Ivalue of abasic type, aflag is associated. Theflagisinitialy
false (to denotethat the variableis uninitialized), and is set to true (to denote that the variableisinitialized)
when a value is assigned to the variable. When the variable is dereferenced (and its value is about to be
used), the flag is checked and arun-time error is generated when it isfalse. The only exception to thisrule
isthe equality operator =, which only generates arun-time error if both sides of the equality are unknown.
Note that the target of an assignment is not dereferenced.

Thisflag can be represented by abyte, which is stored with every Ivalue. Thismakesall lvaluesat least one
byte larger, and, because of alignment, types can become up to 8 bytes (the alignment factor on the Sparc
Solaris platform) larger. Although a bit would suffice to represent the flag, storing it without reducing the
number of bitsreserved for characters, integers, and reals, requires a byte. One can imagine storing al the
bits for one record or for a number of contiguous array elementsin one byte, but implementing this would
be complicated.

6.2.4 Temporaries

Temporaries are temporary, unnamed, variables used to hold intermediate values of calculations. For ex-
ample, the result of the calculation “i +1” is stored in atemporary before being used in an assignment, in
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another expression, or as an actual parameter.

Technically, temporaries are variables that have already been dereferenced for the convenience of the com-
piler implementor; it savescallingcode_coer ce() todereferencethem. Becauseonly referencestobasic
types can be dereferenced, temporaries can only be allocated for basic types.

Temporaries share the allocation strategy of regular variables. Althoughit is possible to employ adifferent
strategy (e.g. registers could be used), it seemed very complicated to implement, and it was therefore not
done.

6.3 Procedures

6.3.1 Procedurerepresentation

Procedure symbols represent Alma-0 procedures, and the corresponding C types are:

t ypedef enum {

call _val =1,
call _var,
call _mx

} callnech_t;

struct formal _param {
struct formal param *next;

char *nare;
cal I mech_t cal | mech;
type_t *type,

1

struct proc {
symnbol _t sym
struct formal _param *formal _par ans;
type_t *return_type;
val ue_t *return_val ue;
code_t *code;
aaaword_t start _| abel,

end_| abel ;
} proc_t;

e Thef or mal _par ans field pointsto alinked list that represents the formal parameters.

Ther et ur n_t ype field pointsto the return type of the procedure, or contains NULL when the pro-
cedure has no return value.

Ther et ur n_val ue field represents the location in the stack frame where the return value should
be stored. Thisfield is used when a RETURN statement is transl ated.

The code field points to the code of the procedure body.

Thest art | abel andend_l abel fieldscontain the start label and the end label.
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6.4c Why Alma-0 hasno CARDI NAL type

Modula-2 addsthe CARDI NAL to thetypesborrowed from Pascal [Wir76], and at the sametype strengthens
the definition of type compatibility to the definition given in section 6.1.1. Thisand afew other definitions
in [Wir85] lead to the following contradiction:

Thetypes CARDI NAL and | NTEGER are not compatible.
All positive non-floating-point literal values are of CARDI NAL type.
The unary minus can only be used on operands of | NTEGER type.
The construct - 5 isillegal.

To circumvent thisproblemalot of special caseshad to built into thetype checkingroutines, e.g. aCARDI NAL
constant smaller than MAXI NT can automatically be coerced into an | NTEGER constant. Becausethismade
the compiler design very complicated, and distracted from the actual purpose of the project, support for the
CARDI NAL type was removed from the compiler.
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Chapter 7

| nter mediate code gener ation

Theintermediate code generation phaseisavery interesting phase; during this phasethe language constructs
areactually tranglated into sequences of instructions. Inthe case of the Alma-0 compiler, thetarget platform
isthe AAA described in chapters 2 and 8.

7.1 Coderepresentation
A code symbol is represented by the following C type:

t ypedef struct code {
synbol _t sym

val ue_t *result;
aaaword_t fal se_| ab;
instr_t *instr;

} code_t;

e Theresul t field pointsto the value that represents the result, if the code is computational. If the
codeisvoid, ther esul t field points to the special valueval ue_voi d, and if the code is condi-
tional, ther esul t field pointsto the special valueval ue_cond.

e Thef al se_l ab field contains the false continuation label, if the codeis conditional.

e Thei nstr field pointsto alinked list of AAA instructions.

7.2 Trandlating language constructsinto code

Because of the syntax directed trandation technique used, an Alma-0 language construct is translated into
AAA instructions, as soon as it has been recognized by the parser. The bottom-up parsing strategy ensures
code has already been generated for the language constructs contained by the current construct, i.e. those
language constructsthat are its descendantsin the abstract syntax tree. This meansthat the result of compu-
tational code can be used, and that conditional code, and its fal se continuation label, can be correctly placed
to get the correct flow of contral.

Thetrandation of most language constructsis obvious (see [ASU86] and [Wir96] for examples), and there-
fore we will only discuss those trandationsthat deal with Alma-0’s extensions.
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7.2.1 Pseudo code

Because the actual instruction sequences generated can be quite long, we will use pseudo code to illustrate
the idea. Check the source files of the compiler (in particular the filesaOcode. ¢, aOcode_ops. ¢, and
aOcode_f | ow. c) for the actual AAA instructions generated. The following language constructs are used
in the pseudo code:

e createfrane_and save.val ues(<frame-type>, <registers>) isa“function”,which
createsroom on the stack for the specified type of frame, and storesthe valuesof the specified registers
in the frame. The base address of the new frameis returned.

e (<registers>) := restoreval ues(<franme-type> <frane-base-address>) is
a“function”, which restores the values of the specified registers from the specified type of frame.

e destroy_frame(<frane-type>) isa“function”, which destroys the specified type of frame.

e (<registers>) := restoreval ues_.and._destroy_frame(<frane-type>,
<f r ane- base- addr ess>) isa*“function”, which restores the values of the specified registers,
and destroys the specified type of frame.

e X : = yisidentical tothe AAA instruction“ADD x, vy, 0”.
e |F x op y THEN a ELSE b ENDisidentical to the AAA instructions:

Bop x, y, true_lab;
b;
BRA conti nue_| ab;
true_| ab:
a,
continue_lI ab;

where Bop is the comparison-and-branch instruction, which performs the correct comparison, e.g.
Bop = BLT,ifop = '<'.

¢ Assignments which are implemented by the recording version of an instructions such as ADD, are
marked by “(* recordi ng version *)”.

¢ Although the instruction REW NDLOGis never explicitly used in the pseudo code fragments, nearly
every assignment to the LP register is actually implemented by the REW NDL OGinstruction, which
takes care of cleaning up logs which would otherwise remain allocated. Only for the correct tranda
tion of the FORALL statement, isdirect assignment to the L P register needed. Seethe compiler source
filesfor details.

722 BES

When aboolean expression (be) is used as a statement (s), the following code is generated:

be.instr;
BRA true_| ab;

be. fal se_| ab:
FAI L;

true_| ab:
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¢ |f theboolean expression evaluatesto TRUE, execution continuesnormally, after thelabel t r ue_| ab.

¢ If the boolean expression evaluates to FALSE, the FAI L instruction is executed, causing ajump to
the last failure point.

723 SBE

When alist of statements(s) is used as a boolean expression (be), the following code is generated:

BP := create_frane_and_save_val ues( SBE_FRAME, LP, BP, EP);
temp : = BP;
ONFAI L fail I ab;

S,

(LP, BP, EP) := restore_ values_and_destroy_ franme(SBE FRAME, temnp)
BRA succeed | ab;

fail _|ab:
(LP, BP, EP) := restore_values_and_destroy_frame(SBE_FRAME, BP)
BRA be. fal se_| ab;

succeed_| ab:

¢ |f s succeeds, the saved valuesarerestored, and execution continuesnormally. Because BP may point
to aframe created during the execution of s, t enp isused as the pointer to the frameinstead.

¢ If s fails, thesaved valuesarerestored, and ajumpismadeto the new false continuationlabel be. f al se_| ab.
Becausethisisthefailure handler installed at the beginning, the register BP will now point to the cor-
rect frame.

7.24 ORELSE

The statement
El THER s ORELSE t ORELSE u END;
istrandated into:

BP : = create_frane_and_save_val ues( ORELSE _FRAVE, BP, EP)
CREATELGCG,

ONFAI L second_branch_| ab;

S,

BRA conti nue_| ab;

second_branch_| ab:
REPLAYLCG,
EP : = restore_val ues( ORELSE _FRAME, BP)
CREATELGG,

ONFAI L final _branch_| ab;

t;
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BRA conti nue_| ab;

final _branch_| ab:
REPLAYLCG,
EP : = restore_val ues( ORELSE_FRAME, BP)
BP : = restore_val ues_and_destroy_frame(ORELSE _FRAME, BP);
u;

conti nue_| ab:

¢ A failure handlerisinstaled and alog is created for al but the last branch.
¢ If theexecution of abranch (but not the last one) fails, thelog isreplayed, and the next branchistried.

¢ If execution of thelast branchfails, no special action should be performed by the OREL SE statement,
and therefore no failure handler isinstalled and no log is created, for the last branch.

7.25 SOME

The statement
SOME i := a TODb BY incr DO s END:
istrandated into:

IF a>b THEN
FAI L;
ELSIF a = b THEN
S,
ELSIF a < b THEN
BP := create_frane_and_save_val ues( SOVE_FRAVE, BP, EP);
CREATELGCG,
ONFAI L fail | ab;
BRA | copbody_| ab;

fail _I|ab:
REPLAYLOG
EP : = restore_val ues( SOVE_FRAME, BP);

i :=1i +incr; (* recording version *)
IF i

< b THEN
CREATELGCG;
ONFAIL fail _Iab;
ELSE
BP := restore_val ues_and_destroy_ frane(SOVE_FRAME, BP);
END
| oopbody_I ab:
S,

END;

e Wheni ncr < 0, every occurrence of the < should be replaced by >.
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e The SOVE statement behaveslike an iterated OREL SE statement; if the loop is unrolled, the instruc-
tionswill be similar to those generated for the OREL SE statement.

726 COMMIT

The statement
COWM T s END

istranslated into:

savesp : = SP;
savebp : = BP;
savelp : = LP;
S,

LP : = savel p;
BP : = savebp;
SP : = savesp;

o After execution of s, any failure handlersinstalled by s or logs created by s, are deleted by restoring
the old values of LP, BP and SP.

7.2°7 FORALL
The statement
FORALL s DOt END

istrandated into:

BP := create_frane_and_store_val ues( FORALL_FRAME, LP, BP);
saveorigbp : = BP;

CREATELCG,

ONFAI L forall_done_lI ab;

S,

savesp : = SP;
savebp : = BP;
savelp := LP;

(LP, BP) := restore_val ues(FORALL_FRAME, saveori gbp);
t;

LP : = savel p;
BP : = savebp;
SP : = savesp;
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FAI L;

forall _done_| ab:
REPLAYLCG,
BP : = restore_val ues_and_destroy_frame(FORALL_FRAME, BP);

e Beforet isexecuted, the context active before the FORALL statement is restored. This preventsthe
assignmentint from being undone when backtracking takesplacein s.

e Animplicit COMM T statement surroundsthe DOpart of the FORALL statement, to delete any choice
points created during execution of t .

e The FAI L ingtruction causes ajump to the last failure handler installed in s. When no more failure
handlers are left in s, execution will continue at f or al | _done_l ab. This approach is similar to
that of the failure-driven loop.

728 EQ

The code generated for the equality operator depends upon the objects being compared:

¢ Whentwo non-lvaluesare being compared, the code generated is no different from that generated for
the other comparison operators.

e Whentwo Ivalues(l hs andr hs) are being compared, the following code is generated:

IF I hs.initialized THEN
IF rhs.initialized THEN
IF Ihs.initialized <> rhs.initialized THEN
BRA fal se_I ab;
END
ELSE
rhs :=lhs; (* recording version *)
END
ELSE
IF rhs.initialized THEN
Ihs :=rhs; (* recording version *)
ELSE
generate_runtine_error;
END
END

¢ When an lvalue and anon-lvalue are being compared, the code generated is similar to that above, but
theinitialized flag of the non-lvalue expression is not checked.

729 MIX

The implementation of the call-by-mixed-form mechanism mostly resembles that of the pass-by-variable
mechanism:

e Thecallee expects areferenceto an lvalue, asits formal parameter.
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¢ When the actual parameter is an lvalue, areferenceto it is passed to the callee.

¢ When the actual parameter is not an lvalue, atemporary is created, the value is assigned to the tem-
porary, and areference to the temporary is passed instead. What happensis similar to rewriting

PROCEDURE max(M X a: | NTEGER) : FORWARD,
BEG N

max(x+5) ;
END

PROCEDURE max( VAR a: | NTECER) : FORWARD;

VAR
t enp: | NTEGER;
BEG N
tenp : = x+5;
max(temnp);
END;

7.210 KNOWN
The expression KNOAN( x) istrandated into:

I'F NOT x.initialized THEN
BRA known. f al se_| ab;
END;

¢ Becauseof the bottom-up parsing strategy, theinformation of theindividual variablesin x isnolonger
available when KNOWN( x) is trandlated; code, which evaluates the expression, has been generated
instead. Thereforeit isimpossibleto check the variablesin the expression. Thereforethis alternative
implementation was chosen because the programmer can easily rewrite complicated expressionsinto
anumber of applications of the KNOAN procedure.

7.2.11 Procedure call

A procedure call in the AAA is ahandled dightly differently from a procedure call in a classic virtual ma-
chine. The procedurecall pr oc; trandatesto:

push_actual _parameters;
EP : = create_frane_and_save_val ues( PROCCALL_FRAME, EP, SP);
JSR proc. | abel ;
(EP, S1) := restore_val ues(PROCCALL_FRAME, EP);
IF S1 < BP THEN
destroy_frame( PROCCALL_FRAME) ;
END;

¢ If achoice point was created in the callee, execution may, at alater point, continue in the body of the
procedure. When that happens, its local variables should be accessible and should have the values
they had thefirst time round. Thereforethe stack frameis not destroyed, if the failure frame register
is equal to or greater than the stack pointer.
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7.3c  Order of code generation

An important characteristic of a compiler, is the order in which code is generated. This characteristic is
closely intermingled with the parsing strategy employed (bottom-up or top-down) and the temporary allo-
cation strategy.

7.3.1c Immediate code emission

A simple code emission strategy is the one used in [Wir96]. A top-down predictive parser is used, which
makes it possible to emit every instruction directly to the output stream during parsing. The following
pseudo-code demonstrates this technique. Note that the procedures par seBool eanExpr essi on and
par seSt at enent Sequence also emit their instructions directly into the output stream.

PROCEDURE par seVWhi | eSt at errent ;
BEG N
| oopLabel get Next Label ;
ski pLabel get Next Label ;
mat ch(’ WHI LE' ) ;
em t (LAB, | ooplLable);
par seBool eanExpr essi on;
em t (BRA_ON _FALSE, skipLabel);
mat ch(’ DO ) ;
par seSt at enent Sequence;
mat ch(’ END' ) ;
em t (BRA, | ooplLabel);
em t (LAB, skiplLabel);
END par seWi | eSt at enmrent ;

This code emission strategy makesit possible to have a simple temporary allocation strategy. For example,
ahitmask of the available registers can be kept. When atemporary is requested, the first register available
according the bitmask is allocated, and the bit corresponding to the register is set. When the temporary is
deallocated, the corresponding bit can simply be cleared, allowing the register to be used again.

7.3.2c Concatenation of instruction sequences

Unfortunately, the Bison parser generator generates a bottom-up parser, preventing us from employing this
strategy; when the action for alanguage construct is executed the actions for the construct in it have already
been executed (e.g. act i on\Wi | eSt at enent isexecuted after act i onBool eanExpr essi on and
act i onSt at ement Sequence have been executed). Therefore, another approach is used; every action
returns a pointer to the list of instructionsit has created, and higher level constructs concatenate these lists
to form larger lists, e.g.
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PROCEDURE acti on\Wi | eSt at errent (
bool eanExpr essi onl nstructi ons,

st at enment Sequencel nstructions : instructions):instructions;
BEG N
| oopLabel := get Next Label;

ski pLabel := get Next Label;

RETURN concat enat el nstructi ons(
i nstruction(LAB, |oopLabel),
bool eanExpr essi onl nstructi ons,
i nstructi on(BRA_ON_FALSE, skipLabel),
st at ement Sequencel nst ructi ons,
i nstructi on(BRA, |ooplLabel),
i nstruction(LAB, skipLabel));

END acti onWi | eSt at enent ;

Using this non-linear instruction emission strategy prevents us from using the simple temporary value al-

location strategy described above. If theactionact i onWhi | eSt at ement wereto allocate atemporary
accordingtothisstrategy it might get appointed amemory location, which was previously allocated to atem-

porary used by act i onBool eanExpr essi on. If instructions using this new temporary were inserted

beforeand after theinstructionsgeneratedby act i onBool eanExpr essi on(i.e. bool eanExpr essi onl nst ruct i on:
the lifetimes of the two temporarieswould overlap. Because the two temporaries use the same memory lo-

cation, their values would become corrupted.

Theactual problemisthe deall ocation that happenstoo soon; act i onBool eanExpr essi on deallocates
thetemporary, which allowsact i onWhi | eSt at emrent to allocate atemporary at the same memory lo-
cation. Thereforethetemporary allocation strategy of the Alma-0 compiler does not allow the deallocation
of temporaries. As registers would fill up very quickly using this approach, temporaries are allocated the
same way regular variables are; in main memory, or on the stack.
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Chapter 8

| mplementation of the AAA

Although code generation and the run-time system are actual ly two separate subjects, thischapter dealswith
both, because together they make up the implementation of the AAA. Code generation takes care of trans-
lating the AAA instructions into C statements, and the run-time system helps these C statements perform
their duties.

8.1 Codegeneration

8.1.1 Instruction representation

In the implementation of the AAA, addressing modes, operands, opcodes, and instructions are represented
by the following C types:

t ypedef enum opcode {
op_recordi ng = 0x8000,
op_nop = 0,
op_add, op_sub, op_mul, op_div, op_nod, op_chk,
op_nove, op_cl ear,
op_beq, op_bne, op_blt, op_bge, op_bgt, op_ble, op_bra,
op_jsr, op_rts, op_onfail, op_fail, op_lab,
op_createl og, op_replaylog, op_rew ndl og,
op_read, op_wite, op_witeln, op_coment
} opcode t;

t ypedef enum addr node {
am regnval = 1,
am i ndbyte, am.indword, am.indfloat, am.indstring,
am i nmmbyte, am.inmmord, am.imfloat, am.imstring
} addrnode_t;

typedef struct operand {

addr node_t addr node;
uni on {
struct {
aaar eg_t reg;

aaawor d_t val ;
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} regnval ;

aaabyte_t byte val;
aaawor d_t wor d_val ;
aaafloat _t float_val;
aaastring_t string_val;
Pou
} operand_t;
typedef struct instr {
struct instr *next ;
opcode_t opcode;
operand_t oper ands| 3] ;
} instr_t;

e Theop_r ecor di ng opcodeisavalue that can be added to one of the other opcodes, to turniit into

its recording versions.

e Ther egnval field of theoper and_t typeisused when the addressing modeis either r egnval ,

i ndbyt e,i ndwor d, ori ndf | oat .

e Thenext fieldof thei nst r _t typepointsto the next instructionin the sequence. Thisdoes prevent

onei nstr _t record from being part of more than oneinstruction sequence.

8.1.2 Code sdlection

Selecting the right C statements to translate the AAA instructions is done according to a straight-forward
scheme. Firstthethree operandsaretranslated into fragmentsof C code, depending on the addressing mode:

Addressing mode

example C code

regnval

i ndbyt e

i ndword

i ndf | oat

i Mmbyt e

i mmor d

i mf | oat

i Mmstring

R4

(* (aaabytet *) nmemtR5-27)
(* (aaawordt *) nemtR4+56)
(* (aaafloatt *) nmemt76)
"a
56
50. 005000
"IN"ma string."

The C fragmentsgenerated for the operands (abbreviated to a, b and ¢) are used to generate the C statement

that correspondsto the opcode:
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Opcode

example C code

ADD

ADD.r ecor di ng
MOVE

CHK

BEQ

JSR

RTS

ONFAI L

FAI L

LAB

NOP
CREATELOG
REPLAYLOG
REW NDLOG
READ

WRI TE

WRI TELN

a=">b+ c;

| ogrecord(&a, sizeof(a)); a =

mencpy(menfal, nen{b], c);

if(a<bé&ka>c){
fprintf("CHK i nstruction fail ed;
exit(1l);

b + c;

val ue out of bounds}\n");

}

if(a == b) goto | abc;

i f(setjnp(* (jnp-buf *) mem+REP) == 0) goto |abc;
| ongj mp(* (j npbuf *) mem+REP, 1);

i f(setjnp(* (jnp-buf *) mem+RBP) != 0) goto |abc;
I ongj mp(* (j nmp_buf *) mem+RBP, 1);

| abc;

| ogcreate(&RLP);

| og.repl ay( &RLP) ;

| ogrew nd(&RLP, b);
fgets(tnp, sizeof(tnp)-1,
printf(b);

putchar(’\n');

stdin); a = atoi (tnp);

Note that Alma-0 procedures are not implemented as C functions, as this would prevent us from letting
the AAA instructions handle the stack. Instead all AAA instructions are trandlated one-on-oneinto their C
counterparts and placed in one C function. Subroutines are handled by using the set j np mechanismin
the standard C library [KR88]. See section 8.4 for a detailed description of the problems encountered here.

The following table provides examples of C code generated by this approach:

MUL

LAB , _, 43
JSR _, ., 46
RTS ., . -

S1, S1, 8
ADD byt e[ SP+32],
BEQ wor d[ 650] ,

RS1 = RS1 * 8;

men]f RSP+32] = RS1 + 56;

if((* (aaawordt *) (nmem+650)) ==
(* (aaawordt *) (mem+646))) goto | ab43;

| ab43;

if(setjnp(* (jnp_buf *) memREP) ==
got o | ab46;

[ ongj mp(* (j np-buf *) mem+REP, 1);

S1, 56
wor d[ 646] , 43

0);

8.2 Run-time environment

8.21 Memory and registers

For each basic AAA datatype an equivalent C typeisdefined. Thistypeisfixed for all AAA typesexcept for
wor d. Theactual C type for the AAA typewor d depends on the host computer; it should be large enough
to either any values of the Alma-0 typel NTEGER or apointer. On most platformsthe Ctypel ong satisfies

these conditions.
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AAA type | C typedef name | actual C type

byt e aaabyt et char
wor d aaawor d_t usually | ong
fl oat aaaf | oat _t doubl e

string | aaastringt | char *

Inthe AAA run-time environment, the memory of the AAA isrepresented by an array of typeaaaf | oat _t
(to get the correct alignment) and the registers are represented by variables of type aaawor d_t , except
for RO which is defined by a#def i ne command as zero, because it should always equal zero. Macro’s
associate register names with register numbers.

aaafloat _t *nen{ AAA MEM SI ZE / si zeof (aaafloat _t)];
#defi ne RO 0
aaawor d_t Rl, R2, R3, R4, R5, REe;

#def i ne Rz 0
#def i ne RS1 1
#def i ne RS2 2
#defi ne RLP 3
#defi ne RBP 4
#defi ne REP 5
#def i ne RSP 6

8.2.2 Logadministration

The log administration system is an important part of the AAA, and its performance has a large impact on
the overall performance of the AAA (see section 8.5).

Thelogsare kept in asingly linked list. The active log is at the front of thelist, and the previoudly active
log isits successor.

For every memory block whose valueis recorded in thelog, alog entry is created. The log entries are kept
in abinary search tree, aswell asin asingly linked list. The binary search tree, which uses the address of
the memory block as its key, allows the log administration system to determine quickly whether a memory
block starting at the same address has already been recorded in thislog. Thelinked list keepsthelog entries
intheorder they were recorded; new log entriesare added to thefront of thelist. Becausetraversing abinary
tree requires recursion, which may cause stack overflow and impacts performance badly, the linked list is
traversed front-to-back instead, when the log is replayed.

Because only the address of a memory block, and not its size, is used as the key for the binary search tree,
one memory location is recorded in the log twice, when it is contained by two overlapping memory blocks
being recorded. Fortunately, thefront-to-back traversal of thesingly linked list used when replaying thelog,
causesits oldest value to berestored last. Therefore, thesingly linked list is actually essentia to the correct
function of the log administration system.

Logsand log entries are represented by the following C types:

typedef struct aaal og {

struct aaal og *next;
struct log_ entry *entries;
struct log_entry *tree;

} aaal og t;

e Thenext field pointsto the previoudy active log.
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e Theentri es field pointsto the most recently added log entry.

e Thet r ee field pointsto the top of the binary tree of log entries.

struct log_ entry {

struct log_entry *next ;
struct log entry *| hs, *rhs;
voi d * memaddr ;
aaaword_t Mensi ze;
char menval [ 1];

Thenext field pointsto the log entry added previoudly to this one.
Thel hs andr hs fields point to the left hand and right hand child of thislog entry.
Thermemaddr and nensi ze fieldsindicate the address and size of the memory block recorded.

Themenval field containsthe value of the memory block. Although thisfield isdeclaredto contain
only asingle byte, a sufficient amount of memory is actually alocated for thel og_ent ry record, to
save the complete memory block. Thislittle C trick avoids having to allocate two blocks of memory
per log entry.

8.3 Generating avalid C program

We have seen how the C statements are generated, and which variabl e definitions and functions are needed.
Now all that remainsis generating avalid C program. Thisis done asfollows:

N

o o k~ »w

~

9.
10.

The C output filea. out . ¢, which will contain the valid C program, is opened.

Dynamic definitions, i.e. the size of main memory, and debugging options, are written to the output
file.

Type and variable definitions for the run-time system are written.
Debugging functions are written.
Log administration functions are written.

Themai n() function, whichinitializestherun-timeenvironmentand callsthefunctionaaacode() ,
iswritten.

Thefirst part of the function aaacode() iswritten.

The C statements corresponding to the AAA code of the main program, followed by the code for the
procedures, are written as part of the function aaacode() .

The closing curly brace for the functionaaacode() iswritten.

The output file is closed.

Thelineswritten from step 3 to step 7 are actually copied directly fromthefileaOcpr ef i x. t xt . Thisis
not avalidfile, becauseit has only apartial definition of thefunctionaaacode() . Therest of itsdefinition
isprovided by steps 8 and 9.
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Commentary

8.4c Program counter emulation

Thefact, that the C language does not allow the programmer access to the program counter register of the
host computer, has seriousimplications for the implementation of the flow control instructions.

An AAA instruction which jumps to a location known at compile-time, can be trandated into a C got o
statement which jumpsto alabel which isinserted at the target location by the LAB statement.

However, when the target location is not known at compile-time this simple approach does not work. As
an examplewe will take the J SR and RTS instructions, which are used to call and return from a subroutine.
When the J SRinstructionis executed, the current value of the program counter issaved, and ajumpismade
toaknownlocation. Thecorresponding RTSinstructionsjumpsback to the original location by restoringthe
saved value. Thislocationisnot known are compile-time, thereforethe RTS instruction cannot betranslated
into agot o statement.

Theset j mp mechanismimplemented by the standard Clibrary [ KR88] providesthesolution. Thefunction
setj np() savesthe current CPU context (program counter and other registers) at a specified address and
returns the value zero. When this context is later restored by calling | ongj np() , execution continuesin
thefunctionset j mp() , which now returnsthe value given to the function| ongj np() *

When the JSR instruction is executed, the function set j nmp() is called to save the current context at the
memory location indicated by the EP register (meni EP] ). The function set j np() returns O, and the
branch is taken to the subroutine. When the corresponding RTS is executed, the function | ongj np()
iscalled with avalue of 1. The original context is restored and the function set j np() returns a second
time, this time with the value 1 and thus the branch is not taken.

For the ONFAI L en FAI L instructions a similar approach is used.

8.5c Alternativelogimplementations

Before deciding to use the binary search tree implementation, three other implementations of the log ad-
ministration system were investigated. All implementations keep the logsin asingly linked list, but they
differ in their representation of the log:

Linked list A logisrepresented asingly linked list. When avalueisrecorded, it, and its memory address,
are added to the front of the list. When thelog isreplayed, thelist is traversed front-to-back, and all
valuesencountered are restored. There may be more than one record for the same memory addressin
thelist, but, because the list is replayed front-to-back, eventually the correct value will be restored.

Block copy Thisimplementation does not keep a separate record for each value. Instead when a new log
is created, acopy of al memory is made, which is copied back when the log is replayed.

However, This implementation does not function correctly in the presence of FORALL statements.
The DO part of a FORALL statement is executed in the context of the surrounding code. Therefore,

10nly the adventurous use | ongj np( 0)



during execution of the DOpart, thetop of thelog stack istemporarily madeinactiveand thelog, which
was active before the FORALL statement, is temporarily made active to ensure that values assigned
inthe DOpart of the FORAL L statement persist when the FORAL L statement compl etes. Because the
block copy implementation saves and subsequently restores all memory addresses, backtracking in
the FORALL part of a FORALL statement causes assignmentsin the DO part to be undone as well.

Binary tree A log is represented as a regular binary search tree, which uses the memory address as the
key. When avalueis recorded, it, and its memory address, are added to the tree, provided the same
memory address was not added before. If it was, nothing happens.

Apart from being stored in atree structure, the valuesare also added to asingly linked list, in the same
order asthe linked list implementation. Because of this, replaying the log only requiresasimple list
traversal instead of arecursivetreetraversal.

AVL tree Thisimplementation isidentical to the binary tree implementation, apart from the fact that the
binary search tree has been implemented as an AVL tree [HSAF93].

8.5.1c Performance of the log implementations

In order to determinewhich implementation givesthe best CPU and memory performance, tests were made.
A collection of programs (see appendix B) was ran on one same system (aSUN Sparc system with2 CPU'’s,
170 MB real memory, 646 MB virtual memory, and SunOSversion 5.4 (Solaris)), while measuring the total
execution time, the number of allocations requests and the maximum amount of bytesallocated at onetime:

Program knapsack queens squares
N=8| N=9| N=10
Linked list implementation
Execution time in seconds 0.800 3.400 | 16.000 84.090 72.290
# of allocation requests 39282 | 146742 | 727981 | 3745458 | 1656637
max. # of bytes allocated 2276 3047 3790 4568 11420
Binary tree implementation
Execution time in seconds 0.710 2.560 | 13.340 63.020 57.310
# of allocation requests 29918 | 52348 | 238745 | 1137788 | 629751
max. # of bytesallocated 2609 1638 1854 2070 2721
AVL tree implementation
Execution time in seconds 0.940 2.900 | 13.830 69.440 62.170
# of allocation requests 29918 | 52348 | 238745 | 1137788 | 629751
max. # of bytes allocated 2985 1878 2126 2374 3129
Block copy implementation
Execution time in seconds n/a| 18.880 | 85.570 | 455.290 | 613.520
# of allocation requests nfa| 13756 | 64337 | 313336 | 474319
max. # of bytes allocated nfa | 289044 | 321240 | 353452 | 323960

We can make the following conclusions from these measurements:

e Thebinary treeimplementation is always quicker than the other implementations, and the maximum
number of bytes alocated is nearly always lowest. Therefore the binary tree implementation was
chosen as the default implementation?.

¢ Although one may expect the linked list implementation to be quicker than the binary tree imple-
mentation because very little has to be doneto record avalue, it is actually slower. 1t seemsthat the
higher number of allocation requests done offsets any benefits that may be had from the simplicity of
the implementation.

20ne of the other implementations can be chosen by changing one linein thefileaOcpr ef i x. t xt
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¢ Although the block copy implementation did not function correctly, its performance was still mea-
sured, where possible, to determine whether it might be interesting to look for awork-around. How-
ever, in some occasions, the block copy implementation is more than ten times slower than the binary
tree implementation. The copying seemsto incur a great overhead, which may be even greater if the
memory size were increased.

e The AVL tree implementation never outperforms the binary tree implementation. One may expect
the AVL treesto perform better when they get larger, but, apparently, the trees never get large enough
for the smaller height of the AV L treesto offset the performanceloss caused by the more complicated
implementation.
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Conclusions and further work

In thisreport | have demonstrated how a compiler can be built, which supports the extensions proposed in
[AS97]. We have seen how thetraditional architectures, which are used to support imperative programming
languages, can be extended in a natural way into an architecture, which provides the primitives needed to
implement the extensions. We have also seen how the new language constructs can easily betrandlated into
sequences of instructionsfor this abstract architecture.

Only the implementations of the SOME, KNOWN and the MIX extensions differ somewhat from their
original definition, but the spirit of these extensions has been kept intact. Thisis supported by the fact that
the example programsfrom the original article can be compiled and run (after adding some syntactical sugar
to make them into valid Alma-0 programs, see appendix B and the filesin the exanpl es directory).

We can conclude that it is possible to implement a programming language that supports the proposed ex-
tensions. However, there is still work to be done:

¢ Optimization techniques used by compilersfor regular imperative programming languages, could be
implemented, e.g. peephole optimization, register allocation strategies, and more constant folding.

e The AAA instructions could be trandated into machine language instructions for a certain platform.
Thiswould make it possible to compare Alma-0 to C fairly.

¢ A number of Modula-2 features, which are missing in this version, could be implemented, e.g. mod-
ules, more types, more flow control statements.

Furthermore, optimization techniquesthat concernthemsel veswith the specific featuresof Alma-0 could be
developed. For example, some assignmentsare never undone, so that the previousval ue does not need to be
recorded. An optimization technique could recognize these assignments and replace the recording version
of the instruction with its non-recording version. Another lead is the fact that some variables are assigned
avalue beforetheir first use, and are therefore always initialized when used in an expression. The flag that
signifies whether such avariableis initialized could be removed, as could the instructions testing the flag.

57



58



Appendix A

Syntax overview

This appendix gives an overview of the Alma-0 syntax. The rule numbers are also used in the source files
aOgram | andaOgramy.

A.1 Lexical rules

Thefollowing regular expressionsform the rulesby which tokensarerecognized. The NEWLI NE, LAYOUT,
and COMMVENT tokens are not passed on to the parser, they are used to separate the other tokens from each
other. The NEWLI NE token is also used to keep track of the current line number.

1. NEW.INE = \n

2. LAYQUT =1 \t]*

3. COWENT = \(\*(["\*]I(V*[7\)]))*\*2A*\)

4. IDENT = [a-zA-Z][a-zA-Z0-9]*

5. INTEGER = [0-9] +

6. REAL = [0-9]+\.[0-9]+(E(\+|\-)?[0-9]+)?

7. STRING = "[""]*" | '["'1*

8. for every keyword there is a rule |ike:
FOR = FOR

A.2 Syntax

The syntax is described by a (non-extended) BNF grammar, but take of the following points:

e Thesymbol — has been replaced by the symbol : .

Identifiersthat start with a capital are tokens defined by the lexical rules.

Identifiersthat start with alowercase letter are non-terminals.

Character sequences encoded in single quotes (e.g. ' =" ) areliterals.

Thetop symbol isconpi | ati onUni t

Lines marked with a star (* ) have been added to implement the extensions.
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10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

27.

28.

29.

30.

number

i dent Li st
qual i dent
opt Qual i dent

desi gnat or

const Decl arati on

const Decl ar ati onLi st :

typeDecl aration
typeDecl ar ati onLi st

type
t ypeli st
fieldList

fiel dLi st Li st

var Decl arati on

var Decl ar ati onLi st

st at enent

st at enent Li st

st at enent Li st Li st

expr essi on

opt Expr essi on

si mpl eExpr essi on

| NTEGER

REAL
identList '’
| DENT
qual i dent
| DENT
qual i dent

/* EMPTY */

qual i dent
desi gnat or
designator '[’

| DENT

| DENT

| DENT

st at enent Li st Li st

expr essi on

3K

const Decl ar ati onLi st const Decl arati on

| DENT ' =’
const Decl ar ati
| DENT ' =" type

typeDecl arati onLi st typeDeclaration ’;

typeDecl aratio
qual i dent

"(’ identlList
opt Qual i dent ’

on

n

[

expr essi on

ARRAY typelist OF type
RECORD fi el dLi stLi st END

typeList ',’ type

type

identList ':’ type
[* EMPTY */

fieldListList ';

fieldList

IdentList ":' type

var Decl arati onLi st varDecl aration ’;

var Decl arati on

designator ':=

RETURN opt Expr essi on

expr essi on

[ * EMPTY */

st at enent Li st
st at enent

st at enent Li st Li st

st at ement Li st
si mpl eExpr essi
si npl eExpr essi
si npl eExpr essi
si mpl eExpr essi
si mpl eExpr essi
si mpl eExpr essi
si npl eExpr essi
si npl eExpr essi
expr essi on

[* EMPTY */

on
on
on
on
on
on
on
on

fieldList

expr essi on

st at enent

" g

<>'
<1
<=’
>1
>=’

si mpl eExpression '+
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st at enment Li st

si mpl eExpr essi on
si npl eExpr essi on
si npl eExpr essi on
si mpl eExpr essi on
si mpl eExpr essi on
si mpl eExpr essi on
si npl eExpr essi on

term

expression ']’



31.

32.

33.

34.

35.

36.

37.
38.

39.
40.

41.

term

f act or

el sifList

opt El se
opt By

orel seli st

procedur eDecl arati on:

pr ocedur eHeadi ng
bl ock
decl aration

decl arati onLi st

si mpl eExpression -’ term
si mpl eExpression OR term
term
term’*’ factor
term’/’ factor
termDIV factor
term MOD factor
term REM f act or
term AND fact or
factor
"+ factor
-’ factor
NOT fact or
nunber
STRI NG
desi gnat or
designator ' (' statenentListList ')’
| F statenent Li st THEN st at enent Li st
el si fList optEl se END
WHI LE statenentList DO statenentLi st END
REPEAT st at enent Li st
UNTI L statenentList END
FOR IDENT ':=" statenentList TO
statenentLi st optBy DO statenentList END
El THER st at enent Li st orel seLi st END
SOVE | DENT ':=" statenentList TO
statenent Li st opt By DO st atementList END
COW T statenentLi st END
FORALL st atenentList DO statenentList END
READ ' (' statenentListList ')’
WRITE ' (* statementListList ")’
WRI TELN ’ (* statenentListList ")’
WRI TELN
KNOWN ' (' designator ')’
(' statenentList ')’
ELSI F statenmentLi st THEN st at enent Li st
el si fList
/* ENMPTY */
ELSE st at enent Li st
/* EMPTY */
BY expression
/* ENMPTY */
orel seLi st ORELSE st at ement Li st
ORELSE st at erent Li st

procedur eHeadi ng ' ;' bl ock | DENT
procedur eHeadi ng ' ;' FORWARD

PROCEDURE | DENT f or mal Par anet ers

decl arati onLi st BEG N st at enent Li st END
CONST const Decl arati onLi st

TYPE typeDecl ar ati onLi st

VAR var Decl ar ati onLi st

procedur eDecl aration ' ;’
decl arati onLi st decl arati on
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| /* EMPTY */

42. formal Paraneters . optl nput ParansLi st opt For mal Ret ur nType
43. optlnput ParansList : (' inputParanmsList ')’
o)
| [* EMPTY */
44. i nput ParansLi st : i nputParansList ';’ inputParans
| i nputParans
45. i nput Par ans . call Mech identList ":’' type
46. cal | Mech © VAR
| MX
| [* EMPTY */
47. opt Formal ReturnType : ':’ qualident
| [* EMPTY */
48. programvbdul e : MODULE I DENT ’;" block IDENT '.’
49. conpil ationUnit : | MPLEMENTATI ON pr ogr anivbdul e

| programvbdul e
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Appendix B

Example Alma-0 programs

B.1 knapsack.a0

1 MODULE knapsack; (* problem 8 *)

2 CONST N = 20;

3 TYPE Real Vector = ARRAY [1..N OF REAL;

4 Bi naryVector = ARRAY [1..N] OF [0..1];

5

6 PROCEDURE knapsack( Vol urre, Val ue: Real Vector; capacity: REAL;
7 VAR Sol ution: BinaryVector);
8 VAR i: | NTECGER

9 Current Best, Total Val ue, volune, waste: REAL;
10 Current Sol uti on: BinaryVector;

1 BEG N

12 CurrentBest := 0.0;

13 Tot al Val ue : = 0.0;

14 FORi :=1 TON

15 Tot al Val ue : = Total Val ue + Val ue[i];
16 END;

17 vol ume : = 0.0;

18 waste := 0.0;

19 FORALL

20 FORi :=1 TO N DO

21 El THER

22 CurrentSolution[i] := 1;

23 vol ume : = volune + Volune[i];
24 vol ume <= capacity;

25 ORELSE

26 CurrentSolution[i] := 0;

27 waste = waste + Value[i];

28 wast e < Total Val ue - Current Best;
29 END

30 END

31 DO

32 Current Best := Total Value - waste;

33 Solution := Current Sol ution;

34 END;
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35
36
37
38
39
40
41
42
43
44
45
46
47
438
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

END knapsack;

VAR
i . | NTEGER;
capacity © REAL;
vols, vals : Real Vector;
sol . BinaryVector;

BEG N

(* initialize problem?*)
vol s[1] := 20.0; vols[2] := 5.0; vol s[3] := 6.3;
vols[4] := 1.2; vol s[5] := 83.67; vol s[ 6] := 0.08;
vol s[7] := 3. 0ES5; vol s[ 8] := 30.0; vol s[9] := 3.0;
vol s[ 10] := 16.5; vol s[ 11] := 19.0; vol s[ 12] := 10. 2;
vol s[ 13] := 17. 4; vol s[14] := 5.0; vol s[15] := 4.0;
vol s[16] := 4.5E2; vols[1l7] := 34.0; vol s[18] := 0. 43;
vol s[19] := 6.5; vol s[20] := 10. 3;
val s[1] := 19.0; val s[2] := 10.2; val s[ 3] := 17. 4,
val s[4] := 5.0; val s[5] := 4.0; val s[ 6] := 4.5E2;
val s[7] := 34.0; val s[ 8] := 0.43; val s[9] := 6.5;
val s[10] := 10. 3; val s[11] := 20.0; val s[12] := 5.0;
val s[13] := 6. 3; val s[14] := 1.2; val s[15] := 83.67;
val s[16] := 0.08; val s[17] := 3.0E5; wvals[18] := 30.0;
val s[19] := 3.0; val s[20] := 16.5;

capacity := 50.0;
(* solve problem¥*)
knapsack(vol s, vals, capacity, sol);
FORi :=1 TO N DO
WRITE('Item ', i);
IF sol[i] = 0 THEN
WRI TE(" not’);
END;
WRI TELN(' i ncluded (volume=", vols[i],
", value=", vals[i], ')");
END,;
END knapsack.

B.2 present.a0

O© 0O NOOUT D WNPRP

PR e
N P o

MODULE present; (* problem9 *)
CONST N = 5;
TYPE reeks = ARRAY [1..N] OF | NTECER

PROCEDURE find(M X e: | NTEGER, a: reeks);

VAR i . | NTEGER;
BEG N
SOME i :=1 TONDOe = a[i] END
END fi nd;
VAR a, b . reeks;
i, X . | NTEGER,



13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

BEG N
(* initialize problem?*)
FORi :=1 TONDOal[i] :=1i; b[i] :=1 END
a[3] :=2; b[2] := 6;
(* solve problens *)
FORALL find(x, a); find(x, b) DO
WRI TELN(Xx, ' is present in both a and b’)
END;

WRI TE(' Enter nunber to search for: '); READ(i);
IF find(i, a) THEN WRITELN(i, * is present in a') END
IF find(i, b) THEN WRI TELN(i, ' is present in b’) END;

| F FORALL find(x, a) DO find(x, b) END THEN
WRI TELN(" Al | el enents of a are present in b');
ELSE
WRI TELN(" Not all elenments of a are present in b’);
END;
END present.

B.3 queens.a0

O© 0O ~NO UL~ WN P

NRNNRNNNMNNNRNNERRR R R R P B
OO NOARWNRPOOWOWMN®UNMWNEPRO

MODULE queens; (* problem 10 *)
CONST N = 8;
TYPE board = ARRAY [1..N] OF [1..N];

PROCEDURE queens(M X x: board);

VAR i, colum, row [1l..N];
BEG N
FOR colum := 1 TO N DO
SOME row : = 1 TO N DO
FORi :=1 TO colum-1 DO

X[1] <> row,
x[i] <> rowtcol um-i;
x[i] <> rowti-colum
END,
x[ col um] = row
END
END
END queens;

VAR b . board;
nrSols : | NTEGER;

BEG N
(* solve problem*)

nrSols := 0;

FORALL queens(b);

DO nrSols := nrSols + 1;

END;

WRI TELN(’ Nunber of solutions ="', nrSols);
END queens.
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B.4 sguares.a0

1 MODULE squares; (* problem 11 *)

2 CONST NX = 5; NY = 6;

3 M = 10;

4 TYPE SquaresVector = ARRAY [1.. M OF | NTEGER,

5

6 PROCEDURE Al readyCovered(i, j: |NTEGER;

7 Si zes: Squar esVector;

8 M X PosX, PosY: SquaresVector);
9 VAR h : | NTEGER,

10 BEG N

1 SOME h := 1 TO M DO

12 KNOWN( Pos X[ h] ) ;

13 KNOWN( PosY[ h] ) ;

14 PosX[ h] <= i;

15 PosX[ h] + Sizes[h] > i;

16 PosY[ h] <= j;

17 PosY[ h] + Sizes[h] > j;

18 END

19 END Al r eadyCover ed;

20

21 PROCEDURE Squares(Sizes: SquaresVector;

22 M X PosX, PosY: SquaresVector);

23 VAR i, j, k : INTECER

24 BEG N

25 FORi := 1 TO NX DO

26 FOR|j :=1 TO NY DO

27 I F NOT Al readyCovered(i,j, Sizes, PosX, PosY) THEN
28 SOME k := 1 TO M DO

29 Sizes[k] + i <= NX + 1;

30 Sizes[k] + j <= NY + 1;

31 PosX[ k] = i;

32 PosY[ k] =j;

33 END

34 END

35 END

36 END

37 END Squar es;

38

39 VAR

40 i © | NTEGER,

41 sqSi zes, sgXs, sq¥Ys : SquaresVector;

42 BEGN

43 (* initialize problem?*)

44 sqSi zes[1] := 1; sqSizes[2] := 2; sqSizes[3] := 2;
45 sqSi zes[4] := 1; sqSizes[5] := 2; sqSizes[6] := 1;
46 sqSi zes[ 7] := 3; sqSizes[8] := 2; sqSizes[9] := 1;
47 sqSi zes[10] : = 1;

48 (* solve problem?*)

49 | F Squar es(sqgSi zes, sgXs, sqYs) THEN

50 FORi :=1 TO M DO

51 WRI TELN(’ Square ', i, ' of size ', sqSizes[i],
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52
53
54
55
56

END

at

sgXs[i],

ELSE WRI TELN(' No solution’);

END;
END squar es.

67
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